A292479 p-INVERT of the positive squares, where p(S) = 1 - S^2.
0, 1, 8, 35, 120, 392, 1336, 4725, 16792, 59191, 207536, 727440, 2553264, 8968569, 31502248, 110627195, 388451624, 1364010648, 4789766120, 16819647565, 59063332152, 207403715119, 728306773600, 2557481457440, 8980717116000, 31536219644721, 110740934436168
Offset: 0
Examples
s = (1,4,9,16,25,...), S(x) = x + 4 x^2 + 9 x^3 + 16 x^4 + ..., p(S(x)) = 1 - (x + 4 x^2 + 9 x^3 + 16 x^4 + ...)^2, 1/p(S(x)) = 1 + x^2 + 8*x^3 + 35*x^4 + 120*x^5 + ... T(x) = (-1 + 1/p(S(x)))/x = x + 8 x^2 + 35 x^3 + 120 x^4 + ... t(s) = (0, 1, 8, 35, 120, ...).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-14,22,-14,6,-1)
Programs
-
Magma
I:=[0,1,8,35,120,392]; [n le 6 select I[n] else 6*Self(n-1)-14*Self(n-2)+22*Self(n-3)-14*Self(n-4)+6*Self(n-5)- Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000290 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292479 *) LinearRecurrence[{6, -14, 22, -14, 6, -1}, {0, 1, 8, 35, 120, 392}, 30] (* Vincenzo Librandi, Oct 03 2017 *)
Formula
G.f.: x*(1 + x)^2/((-1 + 2*x - 4*x^2 + x^3)*(-1 + 4*x - 2*x^2 + x^3)).
a(n) = 6*a(n-1) - 14*a(n-2) + 22*a(n-3) - 14*a(n-4) + 6*a(n-5) - a(n-6) for n >= 7.
Comments