A292503 Number of partitions of n with n sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22404, 121616, 706362, 4361977, 28494493, 196087988, 1416515642, 10709058487, 84505818259, 694397612486, 5929368380664, 52513737017847, 481577858196052, 4565851595293151, 44692014464166068, 451058715629365617
Offset: 0
Keywords
Examples
a(2) = 3: 2, 1a1a, 1a1b. a(3) = 7: 3, 21a, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1a1b1c.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
f:= (n, k)-> add(Stirling2(n, j), j=0..k): b:= proc(n, i, k) option remember; `if`(n=0 or i<2, f(n, k), add(b(n-i*j, i-1, k), j=0..n/i)) end: a:= n-> b(n$3): seq(a(n), n=0..30);
-
Mathematica
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}]; b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)