cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292505 Number of complete orderless tree-factorizations of n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 9, 1, 1, 2, 3, 1, 4, 1, 12, 1, 1, 1, 12, 1, 1, 1, 9, 1, 4, 1, 3, 3, 1, 1, 29, 1, 3, 1, 3, 1, 9, 1, 9, 1, 1, 1, 17, 1, 1, 3, 33, 1, 4, 1, 3, 1, 4, 1, 44, 1, 1, 3, 3, 1, 4, 1, 29, 5, 1, 1, 17, 1
Offset: 2

Views

Author

Gus Wiseman, Sep 17 2017

Keywords

Comments

An orderless tree-factorization (see A292504 for definition) is complete if all leaves are prime numbers. This sequence first differs from A281119 at a(64)=33.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(60)=17 complete orderless tree-factorizations are: (2(2(35))), (2(3(25))), (2(5(23))), (2(235)), (3(2(25))), (3(5(22))), (3(225)), (5(2(23))), (5(3(22))), (5(223)), ((22)(35)), ((23)(25)), (22(35)), (23(25)), (25(23)), (35(22)), (2235).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[postfacs[n],{n}],n]];
    Table[Length[Select[oltfacs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,2,100}]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); v[1]=1; for(k=2, n, w[k]=v[k]+isprime(k); forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+w[k]-1, e)*v[i]))); w[2..n]} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A000669(n) for prime p. - Andrew Howroyd, Nov 18 2018