A292504
Number of orderless tree-factorizations of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 2, 2, 11, 1, 6, 1, 6, 2, 2, 1, 20, 2, 2, 4, 6, 1, 8, 1, 30, 2, 2, 2, 27, 1, 2, 2, 20, 1, 8, 1, 6, 6, 2, 1, 74, 2, 6, 2, 6, 1, 20, 2, 20, 2, 2, 1, 38, 1, 2, 6, 96, 2, 8, 1, 6, 2, 8, 1, 114, 1, 2, 6, 6, 2, 8, 1, 74, 11, 2, 1
Offset: 1
The a(16)=11 orderless tree-factorizations are: 16, (28), (2(24)), (2(2(22))), (2(222)), (44), (4(22)), ((22)(22)), (224), (22(22)), (2222).
-
postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[postfacs[n],{n}],n]];
Table[Length[oltfacs[n]],{n,83}]
-
seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += binomial(e+w[k]-1, e)*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018
A330470
Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.
Original entry on oeis.org
1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0
Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34))
(1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34)))
((11)(12)) (1(1(22))) (23(11))
(1(1(12))) ((12)(12)) ((11)(23))
(1(2(11))) (1(2(12))) (1(1(23)))
(2(1(11))) ((12)(13))
(1(2(13)))
(2(1(13)))
(2(3(11)))
The case with all atoms equal or all atoms different is
A000669.
Not requiring singleton-reduction gives
A330465.
Labeled versions are
A316651 (normal orderless) and
A330471 (strongly normal).
The case where the leaves are sets is
A330626.
Cf.
A000311,
A005121,
A005804,
A141268,
A213427,
A292504,
A292505,
A318812,
A318848,
A318849,
A330467,
A330469,
A330474,
A330624.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
A330467
Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0
The a(3) = 18 trees:
{1,1,1} {1,1,2} {1,2,3}
{{1},{1,1}} {{1},{1,2}} {{1},{2,3}}
{{1},{1},{1}} {{2},{1,1}} {{2},{1,3}}
{{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}}
{{1},{{1},{2}}} {{1},{2},{3}}
{{2},{{1},{1}}} {{1},{{2},{3}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The singleton-reduced version is
A316652.
Not requiring weakly decreasing multiplicities gives
A330469.
The case where the leaves are sets is
A330625.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A318812,
A318849,
A319312,
A330471,
A330475.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
A330469
Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.
Original entry on oeis.org
1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0
The a(3) = 24 trees:
(123) (122) (112) (111)
((1)(23)) ((1)(22)) ((1)(12)) ((1)(11))
((2)(13)) ((2)(12)) ((2)(11)) ((1)(1)(1))
((3)(12)) ((1)(2)(2)) ((1)(1)(2)) ((1)((1)(1)))
((1)(2)(3)) ((1)((2)(2))) ((1)((1)(2)))
((1)((2)(3))) ((2)((1)(2))) ((2)((1)(1)))
((2)((1)(3)))
((3)((1)(2)))
The singleton-reduced version is
A316651.
The strongly normal case is
A330467.
The case when leaves are sets is
A330764.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A316652,
A318812,
A318849,
A319312,
A330625.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019
A330935
Irregular triangle read by rows where T(n,k) is the number of length-k chains from minimum to maximum in the poset of factorizations of n into factors > 1, ordered by refinement.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 5, 8, 4, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 1, 0, 1, 0, 1, 0, 1, 5, 5, 1, 0, 1
Offset: 1
Triangle begins:
1: 16: 0 1 3 2 31: 1 46: 0 1
2: 1 17: 1 32: 0 1 5 8 4 47: 1
3: 1 18: 0 1 2 33: 0 1 48: 0 1 10 23 15
4: 0 1 19: 1 34: 0 1 49: 0 1
5: 1 20: 0 1 2 35: 0 1 50: 0 1 2
6: 0 1 21: 0 1 36: 0 1 7 7 51: 0 1
7: 1 22: 0 1 37: 1 52: 0 1 2
8: 0 1 1 23: 1 38: 0 1 53: 1
9: 0 1 24: 0 1 5 5 39: 0 1 54: 0 1 5 5
10: 0 1 25: 0 1 40: 0 1 5 5 55: 0 1
11: 1 26: 0 1 41: 1 56: 0 1 5 5
12: 0 1 2 27: 0 1 1 42: 0 1 3 57: 0 1
13: 1 28: 0 1 2 43: 1 58: 0 1
14: 0 1 29: 1 44: 0 1 2 59: 1
15: 0 1 30: 0 1 3 45: 0 1 2 60: 0 1 9 11
Row n = 48 counts the following chains (minimum and maximum not shown):
() (6*8) (2*3*8)->(6*8) (2*2*2*6)->(2*4*6)->(6*8)
(2*24) (2*4*6)->(6*8) (2*2*3*4)->(2*3*8)->(6*8)
(3*16) (2*3*8)->(2*24) (2*2*3*4)->(2*4*6)->(6*8)
(4*12) (2*3*8)->(3*16) (2*2*2*6)->(2*4*6)->(2*24)
(2*3*8) (2*4*6)->(2*24) (2*2*2*6)->(2*4*6)->(4*12)
(2*4*6) (2*4*6)->(4*12) (2*2*3*4)->(2*3*8)->(2*24)
(3*4*4) (3*4*4)->(3*16) (2*2*3*4)->(2*3*8)->(3*16)
(2*2*12) (3*4*4)->(4*12) (2*2*3*4)->(2*4*6)->(2*24)
(2*2*2*6) (2*2*12)->(2*24) (2*2*3*4)->(2*4*6)->(4*12)
(2*2*3*4) (2*2*12)->(4*12) (2*2*3*4)->(3*4*4)->(3*16)
(2*2*2*6)->(6*8) (2*2*3*4)->(3*4*4)->(4*12)
(2*2*3*4)->(6*8) (2*2*2*6)->(2*2*12)->(2*24)
(2*2*2*6)->(2*24) (2*2*2*6)->(2*2*12)->(4*12)
(2*2*2*6)->(4*12) (2*2*3*4)->(2*2*12)->(2*24)
(2*2*3*4)->(2*24) (2*2*3*4)->(2*2*12)->(4*12)
(2*2*3*4)->(3*16)
(2*2*3*4)->(4*12)
(2*2*2*6)->(2*4*6)
(2*2*3*4)->(2*3*8)
(2*2*3*4)->(2*4*6)
(2*2*3*4)->(3*4*4)
(2*2*2*6)->(2*2*12)
(2*2*3*4)->(2*2*12)
Final terms of each row are
A317145.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
upfacs[q_]:=Union[Sort/@Join@@@Tuples[facs/@q]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upfacs[y],y],{y,facs[n]}],{n},First[facs[n]]],Length[#]==k-1&]],{n,100},{k,PrimeOmega[n]}]
A318849
Number of orderless tree-partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 11, 8, 27, 20, 30, 38, 96, 74, 114, 58, 308, 234, 1052, 176, 509, 278, 3648, 374, 600, 1076, 1760, 814, 13003, 1306, 47006, 612, 2226, 4200, 3094, 2914, 172605, 16588, 9814, 2168, 640662, 6998, 2402388, 3698, 11496, 65936, 9082538, 4914, 17996
Offset: 1
The a(7) = 11 orderless tree-partitions of {1,1,1,1}:
(1111)
((1)(111))
((11)(11))
((1)(1)(11))
((1)((1)(11)))
((11)((1)(1)))
((1)(1)(1)(1))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
((1)((1)((1)(1))))
(((1)(1))((1)(1)))
Cf.
A000311,
A001055,
A196545,
A292504,
A292505,
A305936,
A316655,
A318762,
A318812,
A318813,
A318847.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
olmsptrees[m_]:=Prepend[Union@@Table[Sort/@Tuples[olmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Length[olmsptrees[nrmptn[n]]],{n,15}]
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A277130
Number of planar branching factorizations of n.
Original entry on oeis.org
0, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 14, 1, 3, 3, 24, 1, 14, 1, 14, 3, 3, 1, 78, 2, 3, 6, 14, 1, 25, 1, 112, 3, 3, 3, 110, 1, 3, 3, 78, 1, 25, 1, 14, 14, 3, 1, 464, 2, 14, 3, 14, 1, 78, 3, 78, 3, 3, 1, 206, 1, 3, 14, 568, 3, 25, 1, 14, 3, 25, 1, 850, 1, 3, 14, 14
Offset: 1
From _Gus Wiseman_, Sep 11 2018: (Start)
The a(12) = 14 planar branching factorizations:
12,
(2*6), (3*4), (4*3), (6*2), (2*2*3), (2*3*2), (3*2*2),
(2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
(End)
-
#include
#include
#include
#define MAX 10000
/* Number of planar branching factorizations of n. */
#define lu unsigned long
lu nbr[MAX]; /* number of branching */
lu a, b, d, e; /* temporary variables */
lu n; lu m, p; // factors of n
lu x; // square root of n
void main(unsigned argc, char *argv[])
{
memset(nbr, 0, MAX*sizeof(lu));
for (b=0, n=1; nDaniel Mondot, May 19 2017 */
-
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
Table[Length[otfs[n]],{n,20}] (* Gus Wiseman, Sep 11 2018 *)
A295281
Number of complete strict tree-factorizations of n > 1.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 4, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 0, 1, 4, 1, 1, 1, 4, 1, 6, 1, 1, 1, 1, 1, 4, 1, 1, 0, 1, 1, 9, 1, 1, 1, 1, 1, 9, 1
Offset: 2
The a(72) = 6 complete strict tree-factorizations are: 2*3*(2*(2*3)), 2*(2*3*(2*3)), 2*(2*(3*(2*3))), 2*(3*(2*(2*3))), 3*(2*(2*(2*3))), (2*3)*(2*(2*3)).
-
postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
sftc[n_]:=Prepend[Join@@Function[fac,Tuples[sftc/@fac]]/@Select[postfacs[n],And[Length[#]>1,UnsameQ@@#]&],n];
Table[Length[Select[sftc[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,2,100}]
-
seq(n)={my(v=vector(n), w=vector(n)); v[1]=1; for(k=2, n, w[k]=v[k]+isprime(k); forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w[2..n]} \\ Andrew Howroyd, Nov 18 2018
A330728
Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1
The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
11 {1}{12} {1}{23} {{1}}{{1}{22}} {{1}}{{1}{12}} {{1}}{{1}{23}}
{2}{11} {2}{13} {{11}}{{2}{2}} {{11}}{{1}{2}} {{11}}{{2}{3}}
{3}{12} {{1}}{{2}{12}} {{1}}{{2}{11}} {{1}}{{2}{13}}
{{12}}{{1}{2}} {{12}}{{1}{1}} {{12}}{{1}{3}}
{{2}}{{1}{12}} {{2}}{{1}{11}} {{1}}{{3}{12}}
{{2}}{{2}{11}} {{13}}{{1}{2}}
{{22}}{{1}{1}} {{2}}{{1}{13}}
{{2}}{{3}{11}}
{{23}}{{1}{1}}
{{3}}{{1}{12}}
{{3}}{{2}{11}}
The version with distinct atoms is
A006472.
The non-maximal version is
A318846.
Final terms in each row of
A330727.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Showing 1-10 of 16 results.
Comments