cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A330470 Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.

Original entry on oeis.org

1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2019

Keywords

Comments

A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).

Examples

			Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x:
  (1111)      (1112)      (1122)      (1123)      (1234)
  (1(111))    (1(112))    (1(122))    (1(123))    (1(234))
  (11(11))    (11(12))    (11(22))    (11(23))    (12(34))
  ((11)(11))  (12(11))    (12(12))    (12(13))    ((12)(34))
  (1(1(11)))  (2(111))    ((11)(22))  (2(113))    (1(2(34)))
              ((11)(12))  (1(1(22)))  (23(11))
              (1(1(12)))  ((12)(12))  ((11)(23))
              (1(2(11)))  (1(2(12)))  (1(1(23)))
              (2(1(11)))              ((12)(13))
                                      (1(2(13)))
                                      (2(1(13)))
                                      (2(3(11)))
		

Crossrefs

The case with all atoms equal or all atoms different is A000669.
Not requiring singleton-reduction gives A330465.
Labeled versions are A316651 (normal orderless) and A330471 (strongly normal).
The case where the leaves are sets is A330626.
Row sums of A339645.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 11 2020

A330467 Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2019

Keywords

Comments

A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
Also the number of different colorings of phylogenetic trees with n labels using strongly normal multisets of colors. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			The a(3) = 18 trees:
  {1,1,1}          {1,1,2}          {1,2,3}
  {{1},{1,1}}      {{1},{1,2}}      {{1},{2,3}}
  {{1},{1},{1}}    {{2},{1,1}}      {{2},{1,3}}
  {{1},{{1},{1}}}  {{1},{1},{2}}    {{3},{1,2}}
                   {{1},{{1},{2}}}  {{1},{2},{3}}
                   {{2},{{1},{1}}}  {{1},{{2},{3}}}
                                    {{2},{{1},{3}}}
                                    {{3},{{1},{2}}}
		

Crossrefs

The singleton-reduced version is A316652.
The unlabeled version is A330465.
Not requiring weakly decreasing multiplicities gives A330469.
The case where the leaves are sets is A330625.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
    Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 28 2020

A330469 Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2019

Keywords

Comments

Also the number of different colorings of phylogenetic trees with n labels using a multiset of colors covering an initial interval of positive integers. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			The a(3) = 24 trees:
  (123)          (122)          (112)          (111)
  ((1)(23))      ((1)(22))      ((1)(12))      ((1)(11))
  ((2)(13))      ((2)(12))      ((2)(11))      ((1)(1)(1))
  ((3)(12))      ((1)(2)(2))    ((1)(1)(2))    ((1)((1)(1)))
  ((1)(2)(3))    ((1)((2)(2)))  ((1)((1)(2)))
  ((1)((2)(3)))  ((2)((1)(2)))  ((2)((1)(1)))
  ((2)((1)(3)))
  ((3)((1)(2)))
		

Crossrefs

The singleton-reduced version is A316651.
The unlabeled version is A330465.
The strongly normal case is A330467.
The case when leaves are sets is A330764.
Row sums of A330762.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
    Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
    seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 29 2019

A330665 Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

First differs from A317145 at a(32) = 5, A317145(32) = 4.
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also series/singleton-reduced factorizations of n with Omega(n) levels of parentheses. See A001055, A050336, A050338, A050340, etc.

Examples

			The a(n) multisystems for n = 2, 6, 12, 24, 48:
  {1}  {1,2}  {{1},{1,2}}  {{{1}},{{1},{1,2}}}  {{{{1}}},{{{1}},{{1},{1,2}}}}
              {{2},{1,1}}  {{{1,1}},{{1},{2}}}  {{{{1}}},{{{1,1}},{{1},{2}}}}
                           {{{1}},{{2},{1,1}}}  {{{{1},{1}}},{{{1}},{{1,2}}}}
                           {{{1,2}},{{1},{1}}}  {{{{1},{1,1}}},{{{1}},{{2}}}}
                           {{{2}},{{1},{1,1}}}  {{{{1,1}}},{{{1}},{{1},{2}}}}
                                                {{{{1}}},{{{1}},{{2},{1,1}}}}
                                                {{{{1}}},{{{1,2}},{{1},{1}}}}
                                                {{{{1},{1}}},{{{2}},{{1,1}}}}
                                                {{{{1},{1,2}}},{{{1}},{{1}}}}
                                                {{{{1,1}}},{{{2}},{{1},{1}}}}
                                                {{{{1}}},{{{2}},{{1},{1,1}}}}
                                                {{{{1},{2}}},{{{1}},{{1,1}}}}
                                                {{{{1,2}}},{{{1}},{{1},{1}}}}
                                                {{{{2}}},{{{1}},{{1},{1,1}}}}
                                                {{{{2}}},{{{1,1}},{{1},{1}}}}
                                                {{{{2},{1,1}}},{{{1}},{{1}}}}
		

Crossrefs

The last nonzero term in row n of A330667 is a(n).
The chain version is A317145.
The non-maximal version is A318812.
Unlabeled versions are A330664 and A330663.
Other labeled versions are A330675 (strongly normal) and A330676 (normal).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

a(2^n) = A000111(n - 1).
a(product of n distinct primes) = A006472(n).

A318846 Number of balanced reduced multisystems whose atoms cover an initial interval of positive integers with multiplicities equal to the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 4, 15, 11, 20, 21, 90, 51, 80, 32, 468, 166, 2910, 124, 521, 277, 20644, 266, 621, 1761, 1866, 841, 165874, 1374, 1484344, 436, 3797, 12741, 5383, 3108, 14653890, 103783, 31323, 2294, 158136988, 12419, 1852077284, 6382, 20786, 939131, 23394406084
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.

Examples

			The a(12) = 21 multisystems on {1,1,2,3} (commas elided):
  {1123}  {{1}{123}}  {{1}{1}{23}}  {{{1}}{{1}{23}}}
          {{2}{113}}  {{1}{2}{13}}  {{{23}}{{1}{1}}}
          {{3}{112}}  {{1}{3}{12}}  {{{1}}{{2}{13}}}
          {{11}{23}}  {{2}{3}{11}}  {{{2}}{{1}{13}}}
          {{12}{13}}                {{{13}}{{1}{2}}}
                                    {{{1}}{{3}{12}}}
                                    {{{3}}{{1}{12}}}
                                    {{{12}}{{1}{3}}}
                                    {{{2}}{{3}{11}}}
                                    {{{3}}{{2}{11}}}
                                    {{{11}}{{2}{3}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    tmsp[m_]:=Prepend[Join@@Table[tmsp[c],{c,Select[mps[m],1
    				

Formula

a(n) = A318812(A181821(n)).
a(prime(n)) = A318813(n).
a(2^n) = A005121(n).

Extensions

Terminology corrected by Gus Wiseman, Jan 04 2020
More terms from Jinyuan Wang, Jun 26 2020

A318848 Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts. A tree-partition is complete if the leaves are all multisets of length 1.

Examples

			The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x:
  (1(1(23)))
  (1(2(13)))
  (1(3(12)))
  (2(1(13)))
  (2(3(11)))
  (3(1(12)))
  (3(2(11)))
  ((11)(23))
  ((12)(13))
  (1(123))
  (2(113))
  (3(112))
  (11(23))
  (12(13))
  (13(12))
  (23(11))
  (1123)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]

Formula

a(n) = A281119(A181821(n)).
a(prime(n)) = A196545(n)
a(2^n) = A000311(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
  11  {1}{12}  {1}{23}  {{1}}{{1}{22}}  {{1}}{{1}{12}}  {{1}}{{1}{23}}
      {2}{11}  {2}{13}  {{11}}{{2}{2}}  {{11}}{{1}{2}}  {{11}}{{2}{3}}
               {3}{12}  {{1}}{{2}{12}}  {{1}}{{2}{11}}  {{1}}{{2}{13}}
                        {{12}}{{1}{2}}  {{12}}{{1}{1}}  {{12}}{{1}{3}}
                        {{2}}{{1}{12}}  {{2}}{{1}{11}}  {{1}}{{3}{12}}
                        {{2}}{{2}{11}}                  {{13}}{{1}{2}}
                        {{22}}{{1}{1}}                  {{2}}{{1}{13}}
                                                        {{2}}{{3}{11}}
                                                        {{23}}{{1}{1}}
                                                        {{3}}{{1}{12}}
                                                        {{3}}{{2}{11}}
		

Crossrefs

The version with distinct atoms is A006472.
The non-maximal version is A318846.
A tree version is A318848, with orderless version A318849.
The unlabeled version is A330664.
Final terms in each row of A330727.
See also A330675 (strongly normal), A330676 (normal), and A330726 (partition).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

a(2^n) = A006472(n).
a(prime(n)) = A000111(n - 1).

A330666 Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided):
    1  11  12  111      112      1111            123      1122
               {1}{11}  {1}{12}  {1}{111}        {1}{23}  {1}{122}
                        {2}{11}  {11}{11}                 {11}{22}
                                 {1}{1}{11}               {12}{12}
                                 {{1}}{{1}{11}}           {1}{1}{22}
                                 {{11}}{{1}{1}}           {1}{2}{12}
                                                          {{1}}{{1}{22}}
                                                          {{11}}{{2}{2}}
                                                          {{1}}{{2}{12}}
                                                          {{12}}{{1}{2}}
Non-isomorphic representatives of the a(12) = 15 multisystems:
  {1,1,2,3}
  {{1},{1,2,3}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{2},{1,1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{2},{3},{1,1}}
  {{{1}},{{1},{2,3}}}
  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,3}}}
  {{{1,2}},{{1},{3}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
  {{{2,3}},{{1},{1}}}
		

Crossrefs

The labeled version is A318846.
The maximum-depth version is A330664.
Unlabeled balanced reduced multisystems by weight are A330474.
The case of constant or strict atoms is A318813.

Formula

a(2^n) = a(prime(n)) = A318813(n).

A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Triangle begins:
   {}
   1
   1
   1   1
   1   2
   1   3   2
   1   3
   1   7   7
   1   5   5
   1   5   9   5
   1   9  11
   1   9  28  36  16
   1  10  24  16
   1  14  38  27
   1  13  18
   1  13  69 160 164  61
   1  24  79  62
For example, row n = 12 counts the following multisystems:
  {1,1,2,3}  {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}
             {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}
             {{1,2},{1,3}}    {{{1}},{{2},{1,3}}}
             {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}
             {{3},{1,1,2}}    {{{1}},{{3},{1,2}}}
             {{1},{1},{2,3}}  {{{1,3}},{{1},{2}}}
             {{1},{2},{1,3}}  {{{2}},{{1},{1,3}}}
             {{1},{3},{1,2}}  {{{2}},{{3},{1,1}}}
             {{2},{3},{1,1}}  {{{2,3}},{{1},{1}}}
                              {{{3}},{{1},{1,2}}}
                              {{{3}},{{2},{1,1}}}
		

Crossrefs

Row sums are A318846.
Final terms in each row are A330728.
Row prime(n) is row n of A330784.
Row 2^n is row n of A008826.
Row n is row A181821(n) of A330667.
Column k = 3 is A318284(n) - 2 for n > 2.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

T(2^n,k) = A008826(n,k).
Showing 1-9 of 9 results.