A292507 Number of partitions of n with up to n distinct kinds of 1.
1, 1, 2, 5, 13, 33, 82, 201, 488, 1176, 2817, 6714, 15931, 37647, 88628, 207914, 486158, 1133304, 2634339, 6106953, 14121157, 32573842, 74968044, 172164086, 394561089, 902471184, 2060338222, 4695324425, 10681885697, 24261437446, 55017434305, 124573678280
Offset: 0
Keywords
Examples
a(3) = 5: 3, 21a, 21b, 21c, 1a1b1c. a(4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1382 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k)) end: a:= n-> b(n$3): seq(a(n), n=0..35);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
Formula
Conjecture: log(a(n)) ~ log(2)*n + Pi*sqrt(n/3) - 3*log(n)/2. - Vaclav Kotesovec, May 11 2019
a(n) = [x^n] (1 + x)^n * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021