cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292508 Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2017

Keywords

Comments

Partial sum operator applied to column k gives column k+1.
A(n,k) is also defined for k < 0. All given formulas and programs can be applied also if k is negative.

Examples

			Square array A(n,k) begins:
  1,  1,  1,   1,   1,    1,    1,    1,     1, ...
  0,  1,  2,   3,   4,    5,    6,    7,     8, ...
  1,  2,  4,   7,  11,   16,   22,   29,    37, ...
  1,  3,  7,  14,  25,   41,   63,   92,   129, ...
  2,  5, 12,  26,  51,   92,  155,  247,   376, ...
  2,  7, 19,  45,  96,  188,  343,  590,   966, ...
  4, 11, 30,  75, 171,  359,  702, 1292,  2258, ...
  4, 15, 45, 120, 291,  650, 1352, 2644,  4902, ...
  7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
		

Crossrefs

Rows n=0-4 give: A000012, A001477, A000124, A004006(k+1), A027927(k+3).
Main diagonal gives A292463.
A(n,n+1) gives A292613.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
          A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
          A(n-1, k)+A(n, k-1))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # third Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)

Formula

G.f. of column k: 1/(1-x)^k * 1/Product_{j>1} (1-x^j).
Column k is Euler transform of k,1,1,1,... .
For fixed k>=0, A(n,k) ~ 2^((k-5)/2) * 3^((k-2)/2) * n^((k-3)/2) * exp(Pi*sqrt(2*n/3)) / Pi^(k-1). - Vaclav Kotesovec, Oct 24 2018