A292508 Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 2, 4, 7, 11, 16, 22, 29, 37, ... 1, 3, 7, 14, 25, 41, 63, 92, 129, ... 2, 5, 12, 26, 51, 92, 155, 247, 376, ... 2, 7, 19, 45, 96, 188, 343, 590, 966, ... 4, 11, 30, 75, 171, 359, 702, 1292, 2258, ... 4, 15, 45, 120, 291, 650, 1352, 2644, 4902, ... 7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add( (numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n) end: seq(seq(A(n, d-n), n=0..d), d=0..14); # second Maple program: A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1, A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n), A(n-1, k)+A(n, k-1)))) end: seq(seq(A(n, d-n), n=0..d), d=0..14); # third Maple program: b:= proc(n, i, k) option remember; `if`(n=0 or i<2, binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i)) end: A:= (n, k)-> b(n$2, k): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; A[n_, k_] := b[n, n, k]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)
Formula
G.f. of column k: 1/(1-x)^k * 1/Product_{j>1} (1-x^j).
Column k is Euler transform of k,1,1,1,... .
For fixed k>=0, A(n,k) ~ 2^((k-5)/2) * 3^((k-2)/2) * n^((k-3)/2) * exp(Pi*sqrt(2*n/3)) / Pi^(k-1). - Vaclav Kotesovec, Oct 24 2018
Comments