A292516 Number of horizontally symmetric diagonal Latin squares of order 2n.
0, 48, 46080, 145662935040, 300216848351861145600
Offset: 1
Examples
Horizontally symmetric diagonal Latin square: 0 1 2 3 4 5 4 2 0 5 3 1 5 4 3 2 1 0 2 5 4 1 0 3 3 0 1 4 5 2 1 3 5 0 2 4 Vertically symmetric diagonal Latin square: 0 1 2 3 4 5 4 2 5 0 3 1 3 5 1 2 0 4 5 3 0 4 1 2 2 4 3 1 5 0 1 0 4 5 2 3
Links
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, On Some Features of Symmetric Diagonal Latin Squares, CEUR WS, vol. 1940 (2017), pp. 74-79.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19 (in Russian)
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Working on errors, Intellectual and Information Systems (2017), pp. 30-36 (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
Formula
a(n) = A287649(n) * (2*n)!.
Comments