cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292520 Expansion of Product_{k>=1} 1/(1 + x^(k^2)).

Original entry on oeis.org

1, -1, 1, -1, 0, 0, 0, 0, 1, -2, 2, -2, 1, 0, 0, 0, 0, -1, 2, -2, 2, -1, 0, 0, 0, -1, 2, -3, 3, -2, 1, 0, 1, -2, 3, -4, 3, -2, 1, 0, 1, -2, 3, -4, 3, -2, 1, 0, 0, -2, 4, -5, 6, -4, 2, -1, 0, -2, 5, -7, 8, -6, 3, -1, 0, -1, 3, -6, 7, -6, 4, -1, 1, -1, 3, -6, 7, -8, 6, -3, 2, -4, 6, -9, 11, -9, 7, -4, 1, -3, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

Convolution inverse of A033461.
The difference between the number of partitions of n into an even number of squares and the number of partitions of n into an odd number of squares.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 + x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 19 2017 *)

Formula

G.f.: Product_{k>=1} 1/(1 + x^(k^2)).
a(n) ~ (-1)^n * exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(7/3)) * Zeta(3/2)^(1/3) / (2^(5/3) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 19 2017
a(n) = Sum_{k=0..n} (-1)^k * A243148(n,k). - Alois P. Heinz, Jul 25 2022