A292530 Primes prime(k) such that neither prime(k) + prime(k-1) nor prime(k) + prime(k+1) is divisible by 3.
3, 53, 157, 173, 211, 257, 263, 373, 509, 541, 563, 593, 607, 653, 733, 947, 977, 997, 1069, 1103, 1123, 1187, 1223, 1237, 1367, 1459, 1499, 1511, 1543, 1747, 1753, 1759, 1777, 1901, 1907, 1913, 2069, 2179, 2287, 2399, 2411, 2417, 2447, 2677, 2903, 2963, 3061, 3067, 3181, 3203, 3307, 3313, 3511
Offset: 1
Keywords
Examples
3 is a term, because 3+2 = 5 and 3+5 = 8; neither 5 nor 8 is divisible by 3. 53 is a term as well, because 53+47 = 100 and 53+59 = 112, and neither 100 nor 112 is divisible by 3.
Programs
-
Maple
Primes:= select(isprime,[2,seq(i,i=3..10000,2)]): R:= select(k -> Primes[k]+Primes[k-1] mod 3 <> 0, {$2..nops(Primes)}): R:= R intersect map(`-`,R,1); Primes[sort(convert(R,list))]; # Robert Israel, Sep 18 2017
-
Mathematica
Select[Prime@ Range@ 500, NoneTrue[# + {NextPrime[#, -1], NextPrime@ #}, Divisible[#, 3] &] &] (* Michael De Vlieger, Sep 19 2017 *)
-
PARI
isok(p) = isprime(p) && ((p + precprime(p-1)) % 3) && ((p + nextprime(p+1)) % 3) \\ Michel Marcus, Sep 18 2017
Extensions
More terms from Robert Israel, Sep 18 2017
Comments