cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A292506 Number T(n,k) of multisets of exactly k nonempty binary words with a total of n letters such that no word has a majority of 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 4, 3, 1, 0, 11, 10, 3, 1, 0, 16, 23, 10, 3, 1, 0, 42, 59, 33, 10, 3, 1, 0, 64, 134, 83, 33, 10, 3, 1, 0, 163, 320, 230, 98, 33, 10, 3, 1, 0, 256, 699, 568, 270, 98, 33, 10, 3, 1, 0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1, 0, 1024, 3434, 3439, 1935, 798, 291, 98, 33, 10, 3, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2017

Keywords

Examples

			T(4,2) = 10: {1,011}, {1,101}, {1,110}, {1,111}, {01,01}, {01,10}, {01,11}, {10,10}, {10,11}, {11,11}.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   3,    1;
  0,   4,    3,    1;
  0,  11,   10,    3,   1;
  0,  16,   23,   10,   3,   1;
  0,  42,   59,   33,  10,   3,  1;
  0,  64,  134,   83,  33,  10,  3,  1;
  0, 163,  320,  230,  98,  33, 10,  3,  1;
  0, 256,  699,  568, 270,  98, 33, 10,  3, 1;
  0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A027306 (for n>0), A316403, A316404, A316405, A316406, A316407, A316408, A316409, A316410, A316411.
Row sums give A292548.
T(2n,n) gives A292549.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n,
          add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    g[n_] := 2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2];
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, x^n, Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1]*x^j, {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 06 2018, from Maple *)

Formula

G.f.: Product_{j>=1} 1/(1-y*x^j)^A027306(j).

A316403 Number of multisets of exactly two nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 23, 59, 134, 320, 699, 1599, 3434, 7682, 16246, 35762, 74892, 163032, 338771, 731051, 1510466, 3237206, 6658530, 14189790, 29083988, 61687496, 126076638, 266332390, 543061284, 1143207236, 2326521164, 4882706596, 9920514328, 20764519984, 42130081155
Offset: 2

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Examples

			a(4) = 10: {1,011}, {1,101}, {1,110}, {1,111}, {01,01}, {01,10}, {01,11}, {10,10}, {10,11}, {11,11}.
a(5) = 23: {1,0011}, {1,0101}, {1,0110}, {1,0111}, {1,1001}, {1,1010}, {1,1011}, {1,1100}, {1,1101}, {1,1110}, {1,1111}, {01,011}, {01,101}, {01,110}, {01,111}, {10,011}, {10,101}, {10,110}, {10,111}, {11,011}, {11,101}, {11,110}, {11,111}.
		

Crossrefs

Column k=2 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 3)
        end:
    a:= n-> coeff(b(n$2), x, 2):
    seq(a(n), n=2..33);

Formula

a(n) = [x^n y^2] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316404 Number of multisets of exactly three nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 83, 230, 568, 1451, 3439, 8384, 19390, 45708, 103770, 238855, 534400, 1208485, 2672043, 5959769, 13051586, 28792488, 62551270, 136760659, 295115360, 640444498, 1374092646, 2963283862, 6326402780, 13569867602, 28846140436, 61586022487, 130422459008
Offset: 3

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=3 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 4)
        end:
    a:= n-> coeff(b(n$2), x, 3):
    seq(a(n), n=3..33);

Formula

a(n) = [x^n y^3] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316405 Number of multisets of exactly four nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 270, 738, 1935, 5004, 12580, 31354, 76444, 185305, 441363, 1046837, 2447913, 5705753, 13143961, 30202325, 68719396, 156034994, 351348607, 789783351, 1762658134, 3928209272, 8700183502, 19244947618, 42340195770, 93049476310, 203518456343
Offset: 4

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=4 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5)
        end:
    a:= n-> coeff(b(n$2), x, 4):
    seq(a(n), n=4..33);

Formula

a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316406 Number of multisets of exactly five nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 798, 2200, 5804, 15275, 39014, 99214, 247065, 612090, 1492837, 3622213, 8682565, 20711303, 48923317, 115048586, 268374750, 623503251, 1438753371, 3307821910, 7560955644, 17225642730, 39047321794, 88249150462, 198572820286, 445610719629
Offset: 5

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=5 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 6)
        end:
    a:= n-> coeff(b(n$2), x, 5):
    seq(a(n), n=5..34);

Formula

a(n) = [x^n y^5] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316407 Number of multisets of exactly six nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2284, 6185, 16471, 43156, 111446, 284517, 717486, 1793081, 4434929, 10887761, 26495243, 64069055, 153761086, 366992020, 870215947, 2053484109, 4818104922, 11256015936, 26164409278, 60583174348, 139655557194, 320805463602
Offset: 6

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=6 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 7)
        end:
    a:= n-> coeff(b(n$2), x, 6):
    seq(a(n), n=6..34);

Formula

a(n) = [x^n y^6] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316408 Number of multisets of exactly seven nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6297, 16989, 44828, 117352, 302429, 773496, 1954845, 4905939, 12195457, 30123762, 73825711, 179891662, 435427632, 1048510795, 2510267189, 5981859208, 14182293004, 33482368279, 78690956088, 184229429914, 429570180998
Offset: 7

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=7 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 8)
        end:
    a:= n-> coeff(b(n$2), x, 7):
    seq(a(n), n=7..35);

Formula

a(n) = [x^n y^7] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316409 Number of multisets of exactly eight nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17133, 45504, 119580, 310416, 798196, 2033289, 5136803, 12878647, 32056022, 79277444, 194822462, 476101571, 1156995495, 2797803485, 6731961588, 16126628466, 38459836055, 91355046531, 216126089962, 509445131238
Offset: 8

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=8 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 9)
        end:
    a:= n-> coeff(b(n$2), x, 8):
    seq(a(n), n=8..36);

Formula

a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316410 Number of multisets of exactly nine nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45684, 120435, 313280, 808581, 2065885, 5241557, 13191343, 32992806, 81964072, 202499115, 497418503, 1215823396, 2956890329, 7159215090, 17256728038, 41428552721, 99060756883, 235997525351, 560191343126
Offset: 9

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=9 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 10)
        end:
    a:= n-> coeff(b(n$2), x, 9):
    seq(a(n), n=9..37);

Formula

a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316411 Number of multisets of exactly ten nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45750, 120655, 314335, 812161, 2078985, 5283157, 13326283, 33400066, 83195864, 206069915, 507722068, 1244740868, 3037497201, 7379529734, 17854498058, 43026654989, 103302756909, 247127149283, 589196413579
Offset: 10

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=10 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 11)
        end:
    a:= n-> coeff(b(n$2), x, 10):
    seq(a(n), n=10..38);

Formula

a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^j)^A027306(j).
Showing 1-10 of 10 results.