cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328556 Expansion of Product_{p prime, k>=1} (1 - x^(p^k)).

Original entry on oeis.org

1, 0, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, 1, 0, -1, -1, -2, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, -3, -3, -1, 1, 1, 0, -1, -1, 2, 2, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, 0, -2, -3, -1, -1, 0, 2, 0, 1, 3, 0, 1, 3, 1, -3, -2, -3, -2, 3, 2, -1, 0, -2, 1, 1, -2, -1, 1, 2, 2, 3, -1, -2, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2019

Keywords

Comments

Convolution inverse of A023894.
The difference between the number of partitions of n into an even number of distinct prime power parts and the number of partitions of n into an odd number of distinct prime power parts (1 excluded).
Conjecture: the last zero (38th) occurs at n = 340.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    R:= 1:
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      for k from 1 to floor(log[p](N)) do
        R:= series(R*(1-x^(p^k)),x,N+1)
      od;
    od:
    seq(coeff(R,x,j),j=0..N); # Robert Israel, Nov 03 2019
  • Mathematica
    nmax = 90; CoefficientList[Series[Product[(1 - Boole[PrimePowerQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Boole[PrimePowerQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 90}]

Formula

G.f.: Product_{k>=1} (1 - x^A246655(k)).

A357521 Expansion of Product_{k>=1} (1 - mu(k)*x^k).

Original entry on oeis.org

1, -1, 1, 0, -1, 2, -3, 3, -2, 0, 1, -2, 2, -2, 1, -2, 3, -4, 4, -2, 0, 2, -5, 6, -5, 3, -2, 1, -1, 1, 0, 0, 3, -6, 6, -5, 4, 0, -5, 7, -7, 5, -2, 2, 0, -2, 0, 1, 5, -7, 11, -14, 11, -6, -1, 9, -12, 8, -11, 11, -6, 10, -13, 8, -2, -12, 26, -26, 24, -20, 2, 11, -8, 14, -15, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[(1 - MoebiusMu[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Sum[d MoebiusMu[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

A329069 Expansion of Product_{k>=1} 1 / (1 + mu(k)^2 * x^k).

Original entry on oeis.org

1, -1, 0, -1, 2, -2, 1, -2, 4, -3, 2, -4, 7, -6, 4, -8, 12, -10, 9, -14, 20, -18, 16, -24, 32, -29, 27, -38, 49, -46, 43, -59, 74, -71, 69, -90, 112, -107, 106, -136, 164, -160, 159, -199, 238, -232, 234, -288, 338, -333, 338, -412, 477, -473, 485, -582, 667, -666, 686, -813, 923
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 04 2019

Keywords

Comments

Convolution inverse of A087188.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 + MoebiusMu[k]^2 x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) Boole[SquareFreeQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 60}]

Formula

G.f.: Product_{k>=1} 1 / (1 + x^A005117(k)).
Showing 1-3 of 3 results.