cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292581 Number of solutions to 4/n = 1/x + 1/y + 1/z in positive integers.

Original entry on oeis.org

0, 3, 12, 10, 12, 39, 36, 46, 30, 63, 48, 106, 24, 93, 216, 148, 24, 141, 60, 196, 162, 141, 120, 304, 60, 111, 162, 232, 42, 459, 108, 394, 174, 141, 372, 442, 54, 183, 420, 538, 42, 489, 78, 352, 540, 243, 198, 904, 102, 303, 294, 334, 78, 513
Offset: 1

Views

Author

Hugo Pfoertner, Sep 20 2017

Keywords

Comments

Corrected version of A192786.
The Erdos-Straus conjecture is that a(n) > 0 for n > 1. Swett verified the conjecture for n < 10^14.
Vaughan shows that the number of n < x with a(n) = 0 is at most x exp(-c * (log x)^(2/3)) for some c > 0.
After a(2) = 3, the values shown are all composite. [Jonathan Vos Post, Jul 17 2011]

Examples

			a(3)=12 because 4/3 can be expressed in 12 ways:
  4/3 =  1/1  + 1/4  + 1/12
  4/3 =  1/1  + 1/6  + 1/6
  4/3 =  1/1  + 1/12 + 1/4
  4/3 =  1/2  + 1/2  + 1/3
  4/3 =  1/2  + 1/3  + 1/2
  4/3 =  1/3  + 1/2  + 1/2
  4/3 =  1/4  + 1/1  + 1/12
  4/3 =  1/4  + 1/12 + 1/1
  4/3 =  1/6  + 1/1  + 1/6
  4/3 =  1/6  + 1/6  + 1/1
  4/3 =  1/12 + 1/1  + 1/4
  4/3 =  1/12 + 1/4  + 1/1
a(4) = 10 because 4/4 = 1 can be expressed in 10 ways:
  4/4=  1/2 + 1/3 + 1/6
  4/4=  1/2 + 1/4 + 1/4
  4/4=  1/2 + 1/6 + 1/3
  4/4=  1/3 + 1/2 + 1/6
  4/4=  1/3 + 1/3 + 1/3
  4/4=  1/3 + 1/6 + 1/2
  4/4=  1/4 + 1/2 + 1/4
  4/4=  1/4 + 1/4 + 1/2
  4/4=  1/6 + 1/2 + 1/3
  4/4=  1/6 + 1/3 + 1/2
		

Crossrefs

For more references and links see A192787.

Programs

  • Mathematica
    checkmult[a_, b_, c_] := If[Denominator[c] == 1, If[a == b && a == c && b == c, Return[1], If[a != b && a != c && b != c, Return[6], Return[3]]], Return[0]];
    a292581[n_] := Module[{t, t1, s, a, b, c, q = Quotient}, t = 4/n; s = 0; For[a = q[1, t]+1, a <= q[3, t], a++, t1 = t - 1/a; For[b = Max[q[1, t1] + 1, a], b <= q[2, t1], b++, c = 1/(t1 - 1/b); s += checkmult[a, b, c]]]; Return[s]];
    Reap[For[n=1, n <= 54, n++, Print[n, " ", an = a292581[n]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Dec 02 2018, adapted from PARI *)
  • PARI
    \\ modified version of code by Charles R Greathouse IV in A192786
    checkmult (a,b,c) =
    {
      if(denominator(c)==1,
         if(a==b && a==c && b==c,
            return(1),
            if(a!=b && a!=c && b!=c,
               return(6),
               return(3)
              )
           ),
         return(0)
         )
    }
    a292581(n) =
    {
      local(t, t1, s, a, b, c);
      t = 4/n;
      s = 0;
      for (a=1\t+1, 3\t,
         t1=t-1/a;
         for (b=max(1\t1+1,a), 2\t1,
              c=1/(t1-1/b);
              s+=checkmult(a,b,c);
             )
          );
         return(s);
    }
    for (n=1,54,print1(a292581(n),", "))