A292581 Number of solutions to 4/n = 1/x + 1/y + 1/z in positive integers.
0, 3, 12, 10, 12, 39, 36, 46, 30, 63, 48, 106, 24, 93, 216, 148, 24, 141, 60, 196, 162, 141, 120, 304, 60, 111, 162, 232, 42, 459, 108, 394, 174, 141, 372, 442, 54, 183, 420, 538, 42, 489, 78, 352, 540, 243, 198, 904, 102, 303, 294, 334, 78, 513
Offset: 1
Keywords
Examples
a(3)=12 because 4/3 can be expressed in 12 ways: 4/3 = 1/1 + 1/4 + 1/12 4/3 = 1/1 + 1/6 + 1/6 4/3 = 1/1 + 1/12 + 1/4 4/3 = 1/2 + 1/2 + 1/3 4/3 = 1/2 + 1/3 + 1/2 4/3 = 1/3 + 1/2 + 1/2 4/3 = 1/4 + 1/1 + 1/12 4/3 = 1/4 + 1/12 + 1/1 4/3 = 1/6 + 1/1 + 1/6 4/3 = 1/6 + 1/6 + 1/1 4/3 = 1/12 + 1/1 + 1/4 4/3 = 1/12 + 1/4 + 1/1 a(4) = 10 because 4/4 = 1 can be expressed in 10 ways: 4/4= 1/2 + 1/3 + 1/6 4/4= 1/2 + 1/4 + 1/4 4/4= 1/2 + 1/6 + 1/3 4/4= 1/3 + 1/2 + 1/6 4/4= 1/3 + 1/3 + 1/3 4/4= 1/3 + 1/6 + 1/2 4/4= 1/4 + 1/2 + 1/4 4/4= 1/4 + 1/4 + 1/2 4/4= 1/6 + 1/2 + 1/3 4/4= 1/6 + 1/3 + 1/2
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1000
- Christian Elsholtz and Terence Tao, Counting the number of solutions to the Erdos-Straus equation on unit fractions, arXiv:1107.1010 [math.NT], 2011-2015.
- Allan Swett, The Erdos-Strauss Conjecture, 1999.
- R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematika 17 (1970), pp. 193-198.
Programs
-
Mathematica
checkmult[a_, b_, c_] := If[Denominator[c] == 1, If[a == b && a == c && b == c, Return[1], If[a != b && a != c && b != c, Return[6], Return[3]]], Return[0]]; a292581[n_] := Module[{t, t1, s, a, b, c, q = Quotient}, t = 4/n; s = 0; For[a = q[1, t]+1, a <= q[3, t], a++, t1 = t - 1/a; For[b = Max[q[1, t1] + 1, a], b <= q[2, t1], b++, c = 1/(t1 - 1/b); s += checkmult[a, b, c]]]; Return[s]]; Reap[For[n=1, n <= 54, n++, Print[n, " ", an = a292581[n]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Dec 02 2018, adapted from PARI *)
-
PARI
\\ modified version of code by Charles R Greathouse IV in A192786 checkmult (a,b,c) = { if(denominator(c)==1, if(a==b && a==c && b==c, return(1), if(a!=b && a!=c && b!=c, return(6), return(3) ) ), return(0) ) } a292581(n) = { local(t, t1, s, a, b, c); t = 4/n; s = 0; for (a=1\t+1, 3\t, t1=t-1/a; for (b=max(1\t1+1,a), 2\t1, c=1/(t1-1/b); s+=checkmult(a,b,c); ) ); return(s); } for (n=1,54,print1(a292581(n),", "))
Comments