cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341345 a(n) = A048673(n) mod 3.

Original entry on oeis.org

1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2021

Keywords

Crossrefs

Cf. A007395 (even bisection), A341346 (odd bisection), A341347.
Cf. also A292603.

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341345(n) = (((A003961(n)+1)/2)%3);

Formula

a(n) = A010872(A048673(n)).
a(n) = 0 iff A292247(n) is odd.
a(n) = 0 iff A292250(n) is odd, or equally, iff both A291759(n) and A304759(n) are even.
a(n) = 0 iff A292251(n) > 0.
a(n) = 1 iff A292248(n) is odd.
a(n) = 1 iff A304759(n) is odd, or equally, iff both A291759(n) and A292250(n) are even.
a(2n) = 2.

A292602 a(n) = floor(A005940(1+n)/4).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 3, 3, 6, 4, 6, 4, 2, 3, 5, 5, 8, 7, 11, 6, 12, 12, 18, 9, 31, 13, 20, 8, 3, 5, 8, 7, 13, 10, 15, 10, 19, 17, 26, 15, 43, 22, 33, 12, 30, 24, 36, 25, 61, 37, 56, 18, 85, 62, 93, 27, 156, 40, 60, 16, 4, 6, 9, 11, 16, 16, 24, 14, 22, 27, 41, 21, 68, 31, 47, 20, 35, 38, 57, 35, 96, 52, 78
Offset: 0

Views

Author

Antti Karttunen, Dec 01 2017

Keywords

Examples

			The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292603):
                                      0
                                      |
                   ...................0...................
                  0                                       1
        1......../ \........1                   2......../ \........2
       / \                 / \                 / \                 / \
      /   \               /   \               /   \               /   \
     /     \             /     \             /     \             /     \
    1       2           3       3           6       4           6       4
   2 3     5 5         8 7    11 6        12 12   18 9        31 13   20 8
		

Crossrefs

Programs

  • Scheme
    (define (A292602 n) (let* ((x (A005940 (+ 1 n))) (d (modulo x 4))) (/ (- x d) 4)))

Formula

a(n) = A002265(A005940(1+n)).
4*a(n) + A292603(n) = A005940(1+n).
Showing 1-2 of 2 results.