cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292606 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).

Original entry on oeis.org

1, 1, 0, 69, 1, 0, 33661, 988, 1, 0, 60376809, 2669683, 16507, 1, 0, 288294050521, 17033188586, 212734266, 261626, 1, 0, 3019098162602349, 223257353561605, 4297382231090, 17634518610, 4196345, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 26 2017

Keywords

Comments

See the comments in A292604.

Examples

			Triangle starts:
[n\k][          0            1          2       3   4   5]
--------------------------------------------------
[0] [           1]
[1] [           1,           0]
[2] [          69,           1,         0]
[3] [       33661,         988,         1,      0]
[4] [    60376809,     2669683,     16507,      1,  0]
[5] [288294050521, 17033188586, 212734266, 261626,  1,  0]
		

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} = A292605, F_{4} is this triangle.
First column: A211212. Row sums: A014608. Alternating row sums: A292607.
Cf. A181985.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292606_row := proc(n) if n = 0 then return [1] fi;
    add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292606_row(n) od;
  • Sage
    # uses[A278074_row from A278074]
    def A292606_row(n):
        if n == 0: return [1]
        L = A278074_row(n)
        S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..5): print(A292606_row(n))

Formula

F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) for n>0 and F_{4; 0}(x) = 1.