A292616 a(n) = 3*a(n-2) - a(n-4) for n > 3, with a(0)=4, a(1)=3, a(2)=a(3)=6, a sequence related to bisections of Fibonacci numbers.
4, 3, 6, 6, 14, 15, 36, 39, 94, 102, 246, 267, 644, 699, 1686, 1830, 4414, 4791, 11556, 12543, 30254, 32838, 79206, 85971, 207364, 225075, 542886, 589254, 1421294, 1542687, 3720996, 4038807, 9741694, 10573734, 25504086, 27682395, 66770564, 72473451, 174807606, 189737958
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Pisano Number
- Wikipedia, Pisano period
- Index entries for linear recurrences with constant coefficients, signature (0, 3, 0, -1).
Programs
-
GAP
a := [4,3,6,6];; for n in [5..10^2] do a[n] := 3 * a[n-2] - a[n-4]; od; A292616 := a; # Muniru A Asiru, Oct 31 2017
-
Maple
A292616 := gfun:-rectoproc({a(n) = 3 * a(n-2) - a(n-4), a(0) = 4,a(1) = 3,a(2) = 6, a(3) = 6}, a(n), remember): map(A292616, [$0..10^3]); # Muniru A Asiru, Oct 16 2017
-
Mathematica
LinearRecurrence[{0, 3, 0, -1}, {4, 3, 6, 6}, 40] (* Or, recomputing from Fibonacci numbers: *) Join[{4, -1, 3}, Flatten[Table[{Fibonacci[2*n], Fibonacci[2*n+6]}, {n, 0, 18} ]]] // Accumulate
Comments