cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292715 Initial member of 8 consecutive primes a, b, c, d, e, f, g, h such that (a + h) = (b + g), (c + g) = (d + f), (a + f) = (b + e) and (a + g) = (b + f).

Original entry on oeis.org

6337, 14717, 77521, 83401, 130643, 344231, 357653, 380377, 496453, 505067, 587101, 593473, 970457, 1130251, 1515691, 1694191, 1936741, 2689997, 2773007, 2811163, 3665371, 3678887, 3713993, 3976361, 4024687, 4181579, 4629461, 4801673, 5438569, 5882197, 6016811
Offset: 1

Views

Author

K. D. Bajpai, Sep 21 2017

Keywords

Comments

The equations reduce to b-a = d-c = f-e = g-f = h-g, i.e. gap number 1, 3, 5, 6, 7 are equal. - Jens Kruse Andersen, Oct 14 2017

Examples

			6337 is a term because it is the first of 8 consecutive primes {6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379} = {a, b, c, d, e, f, g, h}; and (a + h) = (b + g), (c + g) = (d + f), (a + f) = (b + e) and (a + g) = (b + f).
		

Crossrefs

Programs

  • Maple
    A292715:= proc(n)local a, b, c, d, e, f, g, h; a:=ithprime(n); b:=ithprime(n + 1); c:=ithprime(n + 2); d:=ithprime(n + 3); e:=ithprime(n + 4); f:=ithprime(n + 5); g:=ithprime(n + 6); h:=ithprime(n + 7); if (a + h) = (b + g) and (c + g) = (d + f) and (a + f) = (b + e) and (a + g)=(b + f) then RETURN (a); fi; end: seq(A292715(n), n=1..1000000);
  • Mathematica
    Select[Partition[Prime@ Range[10^6], 8, 1], Function[{a, b, c, d, e, f, g, h}, And[(a + h) == (b + g), (c + g) == (d + f), (a + f) == (b + e), (a + g) == (b + f)]] @@ # &][[All, 1]] (* Michael De Vlieger, Sep 21 2017 *)
    Select[Partition[Prime[Range[420000]],8,1],Length[Union[Drop[Drop[ Differences[ #],{4}],{2}]]]==1&][[All,1]](* Harvey P. Dale, Nov 03 2017 *)

A292743 Initial member of 6 consecutive primes a, b, c, d, e, f such that (a + f) = (b + e), (a + e) = (b + d) and (c + f) = (d + e).

Original entry on oeis.org

6353, 14731, 19463, 71333, 77543, 78781, 83417, 104701, 105557, 130651, 185021, 202799, 214433, 218111, 344243, 351031, 357661, 358429, 380417, 408203, 443221, 466547, 496471, 505091, 587117, 593491, 634241, 652733, 702497, 746177, 778241, 807011, 886973, 949951
Offset: 1

Views

Author

K. D. Bajpai, Sep 22 2017

Keywords

Comments

None of the terms <= 10^7, is the smaller of twin primes.
78781 is the first term that is greater of twin primes; 78781 - 2 = 78779 is prime.

Examples

			6353 is a term because it is the initial member of 6 consecutive primes {6353, 6359, 6361, 6367, 6373, 6379} = {a, b, c, d, e, f}; and (a + f) = (b + e), (a + e) = (b + d) and (c + f) = (d + e).
		

Crossrefs

Programs

  • Maple
    A292743:= proc(n)local a,b,c,d,e,f; a:=ithprime(n); b:=ithprime(n+1); c:=ithprime(n+2); d:=ithprime(n+3); e:=ithprime(n+4); f:=ithprime(n+5);  if (a + f) = (b + e) and (a + e) = (b + d) and (c + f) = (d + e) then RETURN (ithprime(n)); fi; end: seq(A292743(n), n=1..100000);
  • Mathematica
    Select[Partition[Prime@ Range[10^5], 6, 1], Function[{a, b, c, d, e, f}, And[(a + f) == (b + e), (a + e) == (b + d), (c + f) == (d + e)]] @@ # &][[All, 1]] (* Michael De Vlieger, Sep 22 2017 *)

A293393 Initial member of 10 consecutive primes {a, b, c, d, e, f, g, h, i, j} such that (j - e) = (i - d) = (h - c) = (g - b) = (f - a).

Original entry on oeis.org

541, 547, 557, 1019, 4229, 4231, 35099, 59617, 91199, 105997, 708251, 998969, 1208209, 1260323, 1376461, 1435997, 1556393, 1752197, 1996217, 2092249, 2152811, 2271383, 2349917, 3011011, 3919199, 3919211, 4020167, 4020197, 4089037, 4089073, 4797503, 4897331, 5124023
Offset: 1

Views

Author

K. D. Bajpai, Oct 08 2017

Keywords

Comments

12689273 is the smallest term such that 12689273 +- 6 are both prime.

Examples

			541 is a term because it is the initial member of 10 consecutive primes {541, 547, 557, 563, 569, 571, 577, 587, 593, 599} = {a, b, c, d, e, f, g, h, i, j}: {(j - e) = (i - d) = (h - c) = (g - b) = (f - a)} = {(599 - 569) = (593 - 563) = (587 - 557) = (577 - 547) = (571 - 541)} = 30.
		

Crossrefs

Programs

  • Maple
    A293393:= proc(n)local a, b, c, d, e, f, g, h, i, j; a:=ithprime(n); b:=ithprime(n+1); c:=ithprime(n+2); d:=ithprime(n+3); e:=ithprime(n+4); f:=ithprime(n+5); g:=ithprime(n+6); h:=ithprime(n+7); i:=ithprime(n+8); j:=ithprime(n+9); if (j - e) = (i - d) and (j - e)= (h - c) and (j - e)= (g - b) and (j - e)= (f - a)then RETURN (a); fi; end: seq(A293393(n), n=1..500000);
    # Alternative:
    P:= select(isprime, [seq(i,i=3..10^7,2)]):
    Q:= P[6..-1]-P[1..-6]:
    J:= select(t -> nops(convert(Q[t..t+4],set))=1, [$1..nops(Q)-4]):
    P[J]; # Robert Israel, Oct 09 2017
  • Mathematica
    Select[Partition[Prime@ Range[10^6], 10, 1], Equal[#10 - #5, #9 - #4, #8 - #3, #7 - #2, #6 - #1] & @@ # &][[All, 1]] (* Michael De Vlieger, Oct 08 2017 *)
    udQ[n_]:=Length[Union[Differences[TakeDrop[n,5]][[1]]]]==1; Select[ Partition[ Prime[ Range[360000]],10,1],udQ][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 19 2018 *)
  • PARI
    for(n = 1, 50000, a = prime(n); b = prime(n+1); c = prime(n+2); d = prime(n+3); e = prime(n+4); f = prime(n+5); g = prime(n+6); h = prime(n+7); i = prime(n+8); j = prime(n+9); if((j - e)==(i - d) && (j - e)==(h - c) && (j - e)==(g - b) && (j - e)==(f - a), print1 (a," ,")));

A293619 Initial member of 6 consecutive primes a, b, c, d, e, f such that both (f + a)/(d - c) and (e + b)/(d - c) are prime.

Original entry on oeis.org

41, 941, 2269, 2411, 5101, 7193, 7283, 12011, 13159, 18427, 19183, 19961, 25589, 27751, 28579, 31151, 35771, 37313, 41543, 47087, 47939, 50459, 52691, 57251, 58229, 58897, 64279, 64553, 65827, 67121, 67411, 67741, 70853, 78277, 81869, 86353, 88993, 90007, 91253
Offset: 1

Views

Author

K. D. Bajpai, Oct 13 2017

Keywords

Examples

			41 is a term because it is the smallest member of 6 consecutive primes {41, 43, 47, 53, 59, 61} = {a, b, c, d, e, f} and both (f + a)/(d - c) = 17 and (e + b)/(d - c) = 17 are prime.
941 is a term because it is the smallest member of 6 consecutive primes {941, 947, 953, 967, 971, 977} = {a, b, c, d, e, f} and both (f + a)/(d - c) = 137 and (e + b)/(d - c) = 137 are prime.
7193 is a term because it is the smallest member of 6 consecutive primes {7193, 7207, 7211, 7213, 7219, 7229} = {a, b, c, d, e, f} and both (f + a)/(d - c) = 7211 and (e + b)/(d - c) = 7213 are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime@Range[50000], 6, 1], Function[{a, b, c, d, e, f}, And[PrimeQ[(f + a)/(d - c)] && PrimeQ[(e + b)/(d - c)]]] @@ # &][[All, 1]]
Showing 1-4 of 4 results.