A292622 Number A(n,k) of partitions of n with up to k distinct kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 4, 4, 3, 3, 2, 1, 5, 7, 5, 5, 4, 4, 1, 6, 11, 9, 8, 7, 6, 4, 1, 7, 16, 16, 13, 12, 10, 8, 7, 1, 8, 22, 27, 22, 20, 17, 14, 11, 8, 1, 9, 29, 43, 38, 33, 29, 24, 19, 15, 12, 1, 10, 37, 65, 65, 55, 49, 41, 33, 26, 20, 14
Offset: 0
Examples
A(3,4) = 9: 3, 21a, 21b, 21c, 21d, 1a1b1c, 1a1b1d, 1a1c1d, 1b1c1d. A(4,3) = 8: 4, 31a, 31b, 31c, 22, 21a1b, 21a1c, 21b1c. A(4,4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 1, 2, 4, 7, 11, 16, 22, 29, ... 1, 2, 3, 5, 9, 16, 27, 43, 65, ... 2, 3, 5, 8, 13, 22, 38, 65, 108, ... 2, 4, 7, 12, 20, 33, 55, 93, 158, ... 4, 6, 10, 17, 29, 49, 82, 137, 230, ... 4, 8, 14, 24, 41, 70, 119, 201, 338, ... 7, 11, 19, 33, 57, 98, 168, 287, 488, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k)) end: A:= (n, k)-> b(n$2, k): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]]; A[n_, k_] := b[n, n, k]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
Formula
G.f. of column k: (1 + x)^k * Product_{j>=2} 1 / (1 - x^j). - Ilya Gutkovskiy, Apr 24 2021
Comments