cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292668 Number of forests of exactly n (unlabeled) ordered rooted trees with a total of 2n non-root nodes.

Original entry on oeis.org

1, 2, 8, 28, 105, 384, 1442, 5388, 20317, 76712, 290790, 1104538, 4205909, 16044994, 61322356, 234739140, 899911685, 3454630372, 13278582906, 51098682962, 196853475135, 759139115962, 2930340545406, 11321631496180, 43779660235746, 169429224658130
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2017

Keywords

Comments

Each tree has at least 1 non-root node.

Examples

			: a(2) = 8: (2 trees in each forest having 4 non-root nodes)
:
: o o . o o .  o o .  o  o .  o  o . o  o  .   o   o .  o   o  .
: | | . | | .  | | . ( ) | . ( ) | . | ( ) .  /|\  | . ( ) ( ) .
: o o . o o .  o o . o o o . o o o . o o o . o o o o . o o o o .
: |   . | | . ( )  . |     .   |   . |     .         .         .
: o   . o o . o o  . o     .   o   . o     .         .         .
: |   .     .      .       .       .       .         .         .
: o   .     .      .       .       .       .         .         .
:
		

Crossrefs

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(C(d+1)
          *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    c[n_] := c[n] = Binomial[2n, n]/(n+1);
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[c[d+1] d, {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A000108(j+1).
a(n) = A275431(2n,n).
a(n) ~ c * 4^n / n^(3/2), where c = 49.48222899350915021666300344559315... - Vaclav Kotesovec, Sep 27 2017