A292668 Number of forests of exactly n (unlabeled) ordered rooted trees with a total of 2n non-root nodes.
1, 2, 8, 28, 105, 384, 1442, 5388, 20317, 76712, 290790, 1104538, 4205909, 16044994, 61322356, 234739140, 899911685, 3454630372, 13278582906, 51098682962, 196853475135, 759139115962, 2930340545406, 11321631496180, 43779660235746, 169429224658130
Offset: 0
Keywords
Examples
: a(2) = 8: (2 trees in each forest having 4 non-root nodes) : : o o . o o . o o . o o . o o . o o . o o . o o . : | | . | | . | | . ( ) | . ( ) | . | ( ) . /|\ | . ( ) ( ) . : o o . o o . o o . o o o . o o o . o o o . o o o o . o o o o . : | . | | . ( ) . | . | . | . . . : o . o o . o o . o . o . o . . . : | . . . . . . . . : o . . . . . . . . :
Links
Programs
-
Maple
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(C(d+1) *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30);
-
Mathematica
c[n_] := c[n] = Binomial[2n, n]/(n+1); a[n_] := a[n] = If[n == 0, 1, Sum[Sum[c[d+1] d, {d, Divisors[j]}] a[n-j], {j, 1, n}]/n]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
G.f.: Product_{j>=1} 1/(1-x^j)^A000108(j+1).
a(n) = A275431(2n,n).
a(n) ~ c * 4^n / n^(3/2), where c = 49.48222899350915021666300344559315... - Vaclav Kotesovec, Sep 27 2017
Comments