A275431 Triangle read by rows: T(n,k) = number of ways to insert n pairs of parentheses in k words.
1, 2, 1, 5, 2, 1, 14, 8, 2, 1, 42, 24, 8, 2, 1, 132, 85, 28, 8, 2, 1, 429, 286, 100, 28, 8, 2, 1, 1430, 1008, 358, 105, 28, 8, 2, 1, 4862, 3536, 1309, 378, 105, 28, 8, 2, 1, 16796, 12618, 4772, 1410, 384, 105, 28, 8, 2, 1, 58786, 45220, 17556, 5220, 1435, 384, 105, 28, 8, 2, 1
Offset: 1
Examples
1 2 1 5 2 1 14 8 2 1 42 24 8 2 1 132 85 28 8 2 1 429 286 100 28 8 2 1 1430 1008 358 105 28 8 2 1 4862 3536 1309 378 105 28 8 2 1 16796 12618 4772 1410 384 105 28 8 2 1 58786 45220 17556 5220 1435 384 105 28 8 2 1
Links
Crossrefs
Programs
-
Maple
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)* binomial(C(i)+j-1, j), j=0..min(n/i, p))))) end: T:= (n, k)-> b(n$2, k): seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 13 2017
-
Mathematica
c[n_] := c[n] = Binomial[2*n, n]/(n + 1); b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[c[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)
Formula
T(n,1) = A000108(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000108(j). - Alois P. Heinz, Apr 13 2017
A304787 Expansion of Product_{k>=1} (1 + x^k)^(binomial(2*k,k)/(k+1)).
1, 1, 2, 7, 20, 67, 222, 758, 2617, 9189, 32554, 116494, 420046, 1525221, 5571065, 20457808, 75476447, 279636977, 1039965746, 3880891892, 14527657602, 54537434161, 205270200229, 774460385687, 2928429307876, 11095878177649, 42122749335654, 160192845018335, 610224764470011
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Catalan Number
Programs
-
Mathematica
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^CatalanNumber[k], {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d CatalanNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
Formula
G.f.: Product_{k>=1} (1 + x^k)^A000108(k).
a(n) ~ c * 4^n / n^(3/2), where c = exp( Sum_{k>=1} (-1)^k * (2 - 4^k + 4^k*sqrt(1 - 4^(1-k)))/(2*k) ) / sqrt(Pi) = 1.4863036894111457491052224706533674748514957... - Vaclav Kotesovec, Mar 21 2021
Comments