cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292684 a(n) is the number of positive integers k not divisible by 10 such that f(kN) = f(N) for N = A292683(n) and f(x) = x / (x without its first digit: A217657(x)).

Original entry on oeis.org

9, 4, 1, 9, 9, 4, 3, 3, 3, 3, 1, 1, 9, 9, 9, 7, 4, 9, 9, 9, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 3, 9, 9, 9, 9, 9, 7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

M. F. Hasler, Oct 17 2017

Keywords

Comments

Sequence A292683 lists the numbers n which are divisible by A217657(n), i.e., by n with its first digit removed.
We exclude k with trailing 0's (just like in A292683) because if k*N has the property, then 10*k*N trivially also has the property.
Is there any number for which there are more than 9 possible k-values?
All of the k-values are listed in the table A292685.

Examples

			For A292683(1) = 11, we have k = 1, ..., 9 satisfying 11*k / A217657(11*k) = 11.
For A292683(2) = 12, we have k = 1, 2, 3, 4 satisfying 12*k / A217657(12*k) = 6.
For A292683(3) = 15, we have only k = 1 satisfying 15*k / A217657(15*k) = 3.
For A292683(4) = 21, we have k = 1, 2, 3, 4, 5, 15, 25, 35 and 45 satisfying 21*k / A217657(21*k) = 2.
		

Crossrefs

Programs

  • PARI
    (A217657(n)=n%10^logint(n,10)); A292684(n,N=A292683(n),r=N/A217657(N),a=[1])={for(k=2,oo,k%10||next;k>10*a[#a]&&break;A217657(k*N)*r==k*N&&a=concat(a,k));#a} \\ Instead of the 1st arg. n, one can directly give N (= A292683(n) by default) as 2nd arg. One could store only the last 'a' (and increase a counter) instead of storing all 'a's.

A292685 Irregular table where row n lists the positive integers k not divisible by 10 such that f(kN) = f(N) for N = A292683(n) and f(x) = x / (x without its first digit: A217657(x)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 1, 1, 2, 3, 4, 5, 15, 25, 35, 45, 1, 2, 3, 4, 5, 15, 25, 35, 45, 1, 2, 5, 15, 1, 5, 15, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 1, 2, 5, 15, 25, 75, 125, 175, 225, 1, 2, 5, 15, 25, 75, 125, 175, 225, 1, 2, 5, 15, 25, 75, 125, 175, 225
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

The numbers N listed in A292683 are such that N is divisible by A217657(N) = N with its initial digit removed. Most of these numbers have several multiples k*N which again have this property, but furthermore, such that the ratio k*N / A217657(k*N) is always the same. The corresponding k-values are listed here.
It is not rare that there are 9 such k-values, although the set of these is usually different from { 1, ..., 9 }. Is there any N for which there more than 10 such k-values?

Examples

			The table starts as follows:
    n | N=A292683(n) | N/A217657(N) | A292685(n,k=1..A292684(n))
    1 |      11      |      11      | 1, 2, 3, 4, 5, 6, 7, 8, 9
    2 |      12      |       6      | 1, 2, 3, 4
    3 |      15      |       3      | 1
    4 |      21      |      21      | 1, 2, 3, 4, 5, 15, 25, 35, 45
    5 |      24      |       6      | 1, 2, 5, 15
      |    (...)     |    (...)     | (...)
   68 |     416      |      26      | 1, 2, 5, 15, 25, 75, 125, 175, 225
           (...)
For A292683(2) = 12, we have k = 1, 2, 3, 4 satisfying 12*k / A217657(12*k) = 6, e.g., 12*4 = 48, 48 / 8 = 6 (= 12 / 2).
There are other k such that 12*k is divisible by A217657(12*k), e.g., k = 6, 7, 8, 17, ... (=> 12*k = 72, 84, 96, 204: all divisible by their last digit), but which yield ratios (here 36, 21, 16, 51) different from 6.
For n = 4, we have, e.g., 21*15 = 315, 315 / 15 = 21 (= 21 / 1), or 21*45 = 945, 945 / 45 = 21. Here too, e.g., 21*24 = 504 is divisible by 04, but 504 / 4 = 126, not 21.
		

Crossrefs

Cf. A292683, A292684 (gives the row lengths), A217657, A000030.

Programs

  • PARI
    A292685_row(n, N=A292683(n), r=N/A217657(N), a=[1])={for(k=2, oo, if(k%10,A217657(k*N)*r==k*N&&a=concat(a,k), k<10*a[#a]||break)); a} \\ Instead of the 1st arg. n, one can directly give N (= A292683(n) by default) as 2nd arg. It is not checked whether N is in A292683 (else the resulting vector should be empty).

A359841 Integers Xd which are divisible by X, where d is the last decimal digit.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 44, 48, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420
Offset: 1

Views

Author

Bernard Schott, Jan 15 2023

Keywords

Comments

Integers k such that k is divisible by A059995(k).
This sequence consists of {the thirty-two 2-digit terms of A034837 (from 10 up to 99)} Union {the positive multiples of 10 (A008592\{0})}.

Crossrefs

Cf. A034837, A059995, A178157, A292683 (similar but with dX).
Subsequence: A008592\{0}.

Programs

  • Mathematica
    Select[Range[10, 500], Divisible[#, Floor[#/10]] &] (* Amiram Eldar, Jan 15 2023 *)
  • PARI
    isok(k) = (k>9) && (k % (k \ 10) == 0); \\ Michel Marcus, Jan 20 2023
  • Python
    def ok(n): return n > 9 and n%(n//10) == 0
    print([k for k in range(421) if ok(k)]) # Michael S. Branicky, Jan 15 2023
    
  • Python
    def A359841(n): return (10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 44, 48, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99)[n-1] if n <= 32 else (n-23)*10 # Chai Wah Wu, Jan 20 2023
    
Showing 1-3 of 3 results.