A292683
Numbers divisible by themselves with first digit removed (A217657), excluding multiples of 10.
Original entry on oeis.org
11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48, 51, 52, 55, 61, 62, 63, 64, 65, 66, 71, 72, 75, 77, 81, 82, 84, 85, 88, 91, 92, 93, 95, 96, 99, 101, 102, 104, 105, 125, 201, 202, 204, 205, 208, 225, 301, 302, 303, 304, 305, 306, 312, 315, 325, 375, 401, 402, 404, 405, 408, 416, 425, 501
Offset: 1
12 is in the sequence because it is divisible by 2.
416 is in the sequence because it is divisible by 16, 416 = 4*4*25 + 16.
-
fQ[n_] := Mod[n, 10] > 0 && Mod[n, n - Quotient[n, 10^Floor@ Log10@ n] 10^Floor@ Log10@ n] == 0; Select[ Range[11, 501], fQ] (* Robert G. Wilson v, Oct 18 2017 *)
Select[Range[10,550],Mod[#,10]!=0&&Mod[#,FromDigits[Rest[IntegerDigits[#]]]]==0&] (* Harvey P. Dale, Sep 15 2024 *)
-
select( is(n)=n%10&&(m=n%10^logint(n,10))&&!(n%m), [0..500])
A292685
Irregular table where row n lists the positive integers k not divisible by 10 such that f(kN) = f(N) for N = A292683(n) and f(x) = x / (x without its first digit: A217657(x)).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 1, 1, 2, 3, 4, 5, 15, 25, 35, 45, 1, 2, 3, 4, 5, 15, 25, 35, 45, 1, 2, 5, 15, 1, 5, 15, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 1, 2, 5, 15, 25, 75, 125, 175, 225, 1, 2, 5, 15, 25, 75, 125, 175, 225, 1, 2, 5, 15, 25, 75, 125, 175, 225
Offset: 1
The table starts as follows:
n | N=A292683(n) | N/A217657(N) | A292685(n,k=1..A292684(n))
1 | 11 | 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9
2 | 12 | 6 | 1, 2, 3, 4
3 | 15 | 3 | 1
4 | 21 | 21 | 1, 2, 3, 4, 5, 15, 25, 35, 45
5 | 24 | 6 | 1, 2, 5, 15
| (...) | (...) | (...)
68 | 416 | 26 | 1, 2, 5, 15, 25, 75, 125, 175, 225
(...)
For A292683(2) = 12, we have k = 1, 2, 3, 4 satisfying 12*k / A217657(12*k) = 6, e.g., 12*4 = 48, 48 / 8 = 6 (= 12 / 2).
There are other k such that 12*k is divisible by A217657(12*k), e.g., k = 6, 7, 8, 17, ... (=> 12*k = 72, 84, 96, 204: all divisible by their last digit), but which yield ratios (here 36, 21, 16, 51) different from 6.
For n = 4, we have, e.g., 21*15 = 315, 315 / 15 = 21 (= 21 / 1), or 21*45 = 945, 945 / 45 = 21. Here too, e.g., 21*24 = 504 is divisible by 04, but 504 / 4 = 126, not 21.
-
A292685_row(n, N=A292683(n), r=N/A217657(N), a=[1])={for(k=2, oo, if(k%10,A217657(k*N)*r==k*N&&a=concat(a,k), k<10*a[#a]||break)); a} \\ Instead of the 1st arg. n, one can directly give N (= A292683(n) by default) as 2nd arg. It is not checked whether N is in A292683 (else the resulting vector should be empty).
Showing 1-2 of 2 results.
Comments