cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292699 Number of solutions to 5 +- 11 +- 17 +- 23 +- ... +- prime(4*n+1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 28, 102, 242, 835, 3381, 10115, 39415, 138555, 465778, 1741167, 6081563, 22156403, 81090107, 301185788, 1098440558, 4071519963, 15235221189, 56764430821, 211797564907, 790029575790, 2962705350767, 11154931819979, 42097079364709
Offset: 1

Views

Author

Seiichi Manyama, Sep 21 2017

Keywords

Examples

			For n=2 the solution is 5-11-17+23 = 0.
For n=3 the solution is 5+11+17-23+31-41 = 0.
For n=4 the 2 solutions are 5-11+17+23+31+41-47-59 = 0 and 5+11-17+23+31-41+47-59 = 0.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, 0, ithprime(2*n+1)+s(n-1)) end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=0, 1,
          (p-> b(n+p, i-1)+b(abs(n-p), i-1))(ithprime(2*i+1))))
        end:
    a:= n-> b(0, 2*n)/2:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 21 2017
  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, Prime[2n+1] + s[n-1]];
    b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 0, 1,
         With[{p = Prime[2i+1]}, b[n+p, i-1] + b[Abs[n-p], i-1]]]];
    a[n_] := b[0, 2n]/2;
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
  • PARI
    {a(n) = 1/2*polcoeff(prod(k=1, 2*n, x^prime(2*k+1)+1/x^prime(2*k+1)), 0)}

Formula

Constant term in the expansion of 1/2 * Product_{k=1..2*n} (x^prime(2*k+1) + 1/x^prime(2*k+1)).