A327635
Numbers k such that both k and k+1 are infinitary abundant numbers (A129656).
Original entry on oeis.org
21735, 21944, 43064, 58695, 188055, 262184, 414855, 520695, 567944, 611415, 687015, 764504, 792855, 809864, 812889, 833624, 874664, 911624, 945944, 976184, 991304, 1019655, 1026375, 1065015, 1073709, 1157624, 1201095, 1218944, 1248344, 1254015, 1272375, 1272704
Offset: 1
21735 is in the sequence since both 21735 and 21736 are infinitary abundant: isigma(21735) = 46080 > 2 * 21735, and isigma(21736) = 50400 > 2 * 21736 (isigma is the sum of infinitary divisors, A049417).
-
f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2n; s={}; ab1 = 0; Do[ab2 = abQ[n]; If[ab1 && ab2, AppendTo[s, n-1]]; ab1 = ab2, {n, 2, 10^5}]; s
A331412
Unitary abundant numbers k such that k + 1 is also unitary abundant.
Original entry on oeis.org
8857357509, 10783550414, 15197873690, 23620285689, 25537083494, 34736070369, 60326914934, 64139567205, 73969772954, 75776483145, 77509981185, 83968675790, 93092467754, 100012014465, 112236593469, 113606741534, 116519300534, 118905484334, 132584489114, 134889106065
Offset: 1
8857357509 is a term since usigma(8857357509) = 17766604800 > 2 * 8857357509, and usigma(8857357510) = 17851083264 > 2 * 8857357510, where usigma is the sum of unitary divisors function (A034448).
A327942
Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).
Original entry on oeis.org
165375, 893024, 1047375, 1576575, 2282175, 2304224, 2858624, 3614624, 4068224, 4096575, 4597424, 4975424, 6591375, 7574175, 8555624, 9511424, 10446975, 10749375, 10872224, 11477024, 12535424, 13773375, 13946624, 14277375, 15926624, 16041375, 16505775, 16769024
Offset: 1
165375 is in the sequence since both 165375 and 165376 are nonunitary abundant: nusigma(165375) = 179280 > 165375, and nusigma(165376) = 183600 > 165376 (nusigma is the sum of nonunitary divisors, A048146).
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; s = {}; q1 = False; Do[q2 = nuabQ[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 2, 10^7}]; s
Showing 1-3 of 3 results.
Comments