cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292715 Initial member of 8 consecutive primes a, b, c, d, e, f, g, h such that (a + h) = (b + g), (c + g) = (d + f), (a + f) = (b + e) and (a + g) = (b + f).

Original entry on oeis.org

6337, 14717, 77521, 83401, 130643, 344231, 357653, 380377, 496453, 505067, 587101, 593473, 970457, 1130251, 1515691, 1694191, 1936741, 2689997, 2773007, 2811163, 3665371, 3678887, 3713993, 3976361, 4024687, 4181579, 4629461, 4801673, 5438569, 5882197, 6016811
Offset: 1

Views

Author

K. D. Bajpai, Sep 21 2017

Keywords

Comments

The equations reduce to b-a = d-c = f-e = g-f = h-g, i.e. gap number 1, 3, 5, 6, 7 are equal. - Jens Kruse Andersen, Oct 14 2017

Examples

			6337 is a term because it is the first of 8 consecutive primes {6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379} = {a, b, c, d, e, f, g, h}; and (a + h) = (b + g), (c + g) = (d + f), (a + f) = (b + e) and (a + g) = (b + f).
		

Crossrefs

Programs

  • Maple
    A292715:= proc(n)local a, b, c, d, e, f, g, h; a:=ithprime(n); b:=ithprime(n + 1); c:=ithprime(n + 2); d:=ithprime(n + 3); e:=ithprime(n + 4); f:=ithprime(n + 5); g:=ithprime(n + 6); h:=ithprime(n + 7); if (a + h) = (b + g) and (c + g) = (d + f) and (a + f) = (b + e) and (a + g)=(b + f) then RETURN (a); fi; end: seq(A292715(n), n=1..1000000);
  • Mathematica
    Select[Partition[Prime@ Range[10^6], 8, 1], Function[{a, b, c, d, e, f, g, h}, And[(a + h) == (b + g), (c + g) == (d + f), (a + f) == (b + e), (a + g) == (b + f)]] @@ # &][[All, 1]] (* Michael De Vlieger, Sep 21 2017 *)
    Select[Partition[Prime[Range[420000]],8,1],Length[Union[Drop[Drop[ Differences[ #],{4}],{2}]]]==1&][[All,1]](* Harvey P. Dale, Nov 03 2017 *)