A292745 Number A(n,k) of partitions of n with k sorts of part 1 which are introduced in ascending order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 3, 6, 5, 2, 1, 1, 3, 7, 13, 7, 4, 1, 1, 3, 7, 19, 26, 11, 4, 1, 1, 3, 7, 20, 52, 54, 15, 7, 1, 1, 3, 7, 20, 62, 151, 108, 22, 8, 1, 1, 3, 7, 20, 63, 217, 442, 219, 30, 12, 1, 1, 3, 7, 20, 63, 232, 803, 1314, 439, 42, 14
Offset: 0
Examples
A(3,2) = 6: 3, 21a, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 3, 3, 3, 3, 3, 3, ... 1, 3, 6, 7, 7, 7, 7, 7, 7, ... 2, 5, 13, 19, 20, 20, 20, 20, 20, ... 2, 7, 26, 52, 62, 63, 63, 63, 63, ... 4, 11, 54, 151, 217, 232, 233, 233, 233, ... 4, 15, 108, 442, 803, 944, 965, 966, 966, ... 7, 22, 219, 1314, 3092, 4158, 4425, 4453, 4454, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
f:= (n, k)-> add(Stirling2(n, j), j=0..k): b:= proc(n, i, k) option remember; `if`(n=0 or i<2, f(n, k), add(b(n-i*j, i-1, k), j=0..n/i)) end: A:= (n, k)-> b(n$2, k): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}]; b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; A[n_, k_] := b[n, n, k]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from Maple *)
Formula
A(n,k) = Sum_{j=0..k} A292746(n,j).
A(n,k) = A(n,n) for all k >= n.