cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292754 Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n.

Original entry on oeis.org

1, -1, 5, -11, 83, -143, 625, -1843, 24323, 61477, -14165, -8084893, 31181719, 1682401061, -3166220215, -251783137859, 3865962456803, 394670372519917, -765052915887545, -98394908192751193, 384080734825119709, 60838795345430052431, -119312155199695296505, -22845758944383820991909
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2017

Keywords

References

  • Chao-Ping Chen, Richard B. Paris, On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas, Applied Mathematics and Computation 293 (2017) 30-39. See (3.12).

Crossrefs

Cf. A088802 or A123854 (denominators).

Programs

  • Mathematica
    nu[j_] := (-1)^(j+1) ((4 - 2^(1-j)) BernoulliB[j+1] - (j+1) 2^(-j))/(j*(j + 1)); mu[j_] := mu[j] = If[j == 0, 1, Sum[k nu[k] mu[j-k], {k, j}]/j]; Table[Numerator@mu@n, {n, 0, 23}] (* Giovanni Resta, May 29 2019 *)
    Numerator[CoefficientList[Series[16^n/(Pi*(2*n + 1) * Binomial[2*n, n]^2), {n, Infinity, 20}], 1/n]] (* Vaclav Kotesovec, Jun 02 2019 *)
  • PARI
    nu(j) = (-1)^(j+1)*((4-2^(1-j))*bernfrac(j+1) - (j+1)*2^(-j))/(j*(j+1));
    mu(j) = if (j==0, 1, sum(k=1, j, k*nu(k)*mu(j-k))/j);
    a(n) = numerator(mu(n)); \\ Michel Marcus, May 29 2019

Formula

See (3.8) and (3.11) in Chen link.

Extensions

More terms from Michel Marcus, May 29 2019