cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296793 a(n) = n! * [x^n] exp(x)*(sec(x) + tan(x))^n.

Original entry on oeis.org

1, 2, 9, 67, 705, 9601, 160429, 3175579, 72638209, 1884974185, 54709142101, 1755923320559, 61748847320545, 2360991253910069, 97518218630249005, 4327060674324941491, 205272207854416078849, 10367500700785078039473, 555414837143457708584101, 31458118283019682610004279
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Crossrefs

Main diagonal of A322268.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x] (Sec[x] + Tan[x])^n, {x, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = Vec(serlaplace(exp(x)*(1/cos(x) + tan(x))^n))[n+1] \\ Iain Fox, Dec 20 2017

Formula

a(n) ~ c * d^n * n^n, where d = 1.12712316036287986633533456353714856005183790513784733... and c = 1.61865092826915643845148401952113086265743345... - Vaclav Kotesovec, Dec 21 2017

A292759 Expansion of e.g.f. exp(x)*(tan x + sec x)^3.

Original entry on oeis.org

1, 4, 16, 67, 304, 1519, 8386, 51007, 340024, 2469859, 19438606, 164899447, 1500636844, 14587478299, 150891959026, 1655133221887, 19192311085264, 234597922978339, 3015167371458646, 40651421300224327, 573707768015267284, 8458761578948943979, 130059537979390701466
Offset: 0

Views

Author

N. J. A. Sloane, Sep 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x]*(Tan[x]+Sec[x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 02 2019 *)

Formula

a(n) ~ 2^(n + 11/2) * n^(n + 5/2) / (Pi^(n + 5/2) * exp(n - Pi/2)). - Vaclav Kotesovec, Jun 02 2019

A322268 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x)*(sec(x) + tan(x))^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 9, 1, 1, 5, 16, 29, 24, 1, 1, 6, 25, 67, 105, 77, 1, 1, 7, 36, 129, 304, 433, 294, 1, 1, 8, 49, 221, 705, 1519, 2029, 1309, 1, 1, 9, 64, 349, 1416, 4145, 8386, 10709, 6664, 1, 1, 10, 81, 519, 2569, 9601, 26385, 51007, 63025, 38177, 1, 1, 11, 100, 737, 4320, 19777, 69406, 181969, 340024, 409713, 243034, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k + 1)^2*x^2/2! + (k^3 + 3*k^2 + 4*k + 1)*x^3/3! + (k^4 + 4*k^3 + 10*k^2 + 8*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,     1,     1,     1,  ...
  1,   2,    3,     4,     5,     6,  ...
  1,   4,    9,    16,    25,    36,  ...
  1,   9,   29,    67,   129,   221,  ...
  1,  24,  105,   304,   705,  1416,  ...
  1,  77,  433,  1519,  4145,  9601,  ...
		

Crossrefs

Columns k=0..3 give A000012, A000667, A292756, A292759.
Main diagonal gives A296793.
Cf. A322267.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x] (Sec[x] + Tan[x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(x)*(sec(x) + tan(x))^k.
Showing 1-3 of 3 results.