A292796 Number of sets of nonempty words with a total of n letters over n-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 3, 13, 60, 326, 2065, 14508, 116845, 1039459, 10339365, 112376487, 1339665295, 17256611005, 240193792120, 3578746993871, 56986570945387, 963868021665359, 17281651020455445, 327058650473873893, 6519981694119182165, 136489249161324882063
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 1: {a}. a(2) = 3: {aa}, {ab}, {ba}. a(3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) end: a:= n-> h(n$3): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]]; a[n_] := h[n, n, n]; a /@ Range[0, 30] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
Formula
a(n) = [x^n] Product_{j=1..n} (1+x^j)^A226873(j,n).
a(n) = A292795(n,n).
a(n) ~ c * n!, where c = A247551 = 2.529477472079152648... - Vaclav Kotesovec, Sep 28 2017