A292830 a(1) = 1, for n>=2, a(n) = B(2*n-1, n), where B(n, x) is the Bernoulli polynomial.
1, 3, 85, 5558, 651186, 119617025, 31697064295, 11444459810700, 5400661033684164, 3227014932144214335, 2381276769035483594793, 2126703075527239956801538, 2260781626706432961741917750, 2820945601365221814523529200893, 4082702018096881373945823658830923
Offset: 1
Keywords
References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.
Crossrefs
Cf. A291897.
Programs
-
Maple
a := n -> `if`(n=1, 1, bernoulli(2*n-1, n)): # Peter Luschny, Sep 25 2017
-
Mathematica
Array[Ceiling@ BernoulliB[2 # - 1, #] &, 15] (* Michael De Vlieger, Sep 24 2017 *)
-
PARI
a(n) = if (n==1, 1, subst(bernpol(2*n-1), x, n)); \\ Michel Marcus, Sep 25 2017
Formula
From [Abramowitz and Stegun] for n >= 2 we have a(n) = (2*n - 1) * (1^(2*n - 2) + 2^(2*n - 2) + ... + (n-1)^(2*n - 2)).
Extensions
More terms from Peter J. C. Moses, Sep 24 2017
Comments