A292472 Generalized heptagonal numbers that are also Fibonacci numbers.
0, 1, 13, 34, 55
Offset: 1
Links
- B. Srinivasa Rao, Heptagonal Numbers in Fibonacci Sequence and Diophantine Equations 4x^2 = 5y^2(5y-3)^2+-16, The Fibonacci Quarterly, Vol. 41, No. 5 (2003), 414-420.
- Szabolcs Tengely, Finding g-gonal numbers in recurrence sequences, Fibonacci Quarterly, Vol.46/47, No. 3 (2009), 235-240.
Programs
-
Mathematica
Intersection[Array[(# (# + 1)/2 - 1)/5 &, 50, 0], Array[Fibonacci, 50, 0]] (* Michael De Vlieger, Sep 18 2017 *)
-
PARI
a085787(n) = (5*(-n\2)^2 - (-n\2)*3*(-1)^n) / 2 is_a000045(n) = my(x=0); while(fibonacci(x) < n, x++); if(fibonacci(x)==n, return(1)); 0 for(n=0, 60, if(is_a000045(a085787(n)), print1(a085787(n), ", ")))
Comments