cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292892 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^k * (exp(x) - 1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 2, 5, 1, 0, 0, 3, 15, 1, 0, 0, 6, 16, 52, 1, 0, 0, 0, 12, 65, 203, 1, 0, 0, 0, 24, 20, 336, 877, 1, 0, 0, 0, 0, 60, 390, 1897, 4140, 1, 0, 0, 0, 0, 120, 120, 2562, 11824, 21147, 1, 0, 0, 0, 0, 0, 360, 210, 11816, 80145, 115975, 1, 0, 0, 0, 0, 0, 720, 840, 20496, 105912, 586000, 678570
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,   1, ...
   1,  0,  0,  0,   0, ...
   2,  2,  0,  0,   0, ...
   5,  3,  6,  0,   0, ...
  15, 16, 12, 24,   0, ...
  52, 65, 20, 60, 120, ...
		

Crossrefs

Columns k=0..3 give A000110, A052506, A240989, A292891.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), stirling(n-k*j, j, 2)/(n-k*j)!); \\ Seiichi Manyama, Jul 09 2022

Formula

From Seiichi Manyama, Jul 09 2022: (Start)
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} Stirling2(n-k*j,j)/(n-k*j)!.
T(0,k) = 1 and T(n,k) = (n-1)! * Sum_{j=k+1..n} j/(j-k)! * T(n-j,k)/(n-j)! for n > 0. (End)

A292893 Expansion of e.g.f. exp(x * (1 - exp(x))).

Original entry on oeis.org

1, 0, -2, -3, 8, 55, 84, -637, -4992, -10593, 92060, 1012099, 3642000, -18733585, -354606084, -2157876645, 2003383424, 175455790399, 1766183783868, 5436448194707, -96997103373360, -1770215099996721, -13073420293290148, 22275369715313131
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Crossrefs

Column k=1 of A292894.

Programs

  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x*(1-exp(x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (-1)^k*stirling(n-k, k, 2)/(n-k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=2, i, j/(j-1)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a(n) = sum(k=0, n, (-1)^k*(k+1)^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Aug 29 2022
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(k+1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022

Formula

From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * Stirling2(n-k,k)/(n-k)!.
a(0) = 1; a(n) = -(n-1)! * Sum_{k=2..n} k/(k-1)! * a(n-k)/(n-k)!. (End)
From Seiichi Manyama, Aug 29 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^k * (k+1)^(n-k) * binomial(n,k).
G.f.: Sum_{k>=0} (-x)^k / (1 - (k+1)*x)^(k+1). (End)

A292951 Expansion of e.g.f. exp(x^2 * (1 - exp(x))).

Original entry on oeis.org

1, 0, 0, -6, -12, -20, 330, 2478, 11704, -15192, -751050, -7817150, -38408172, 151402524, 5793891922, 69046056870, 393083614320, -2517944476592, -98819987200146, -1384209703077750, -9376308260215220, 67288368700200900, 3186749671049174538
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Crossrefs

Column k=2 of A292894.
Cf. A240989.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^2 (1-Exp[x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^2*(1-exp(x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1)^k*stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * Stirling2(n-2*k,k)/(n-2*k)!.
a(0) = 1; a(n) = -(n-1)! * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!. (End)
Showing 1-3 of 3 results.