cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292913 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(k*x)-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 15, 0, 1, 5, 32, 135, 240, 52, 0, 1, 6, 50, 320, 1215, 1664, 203, 0, 1, 7, 72, 625, 3840, 12636, 12992, 877, 0, 1, 8, 98, 1080, 9375, 53248, 147987, 112256, 4140, 0, 1, 9, 128, 1715, 19440, 162500, 831488, 1917999, 1059840, 21147, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) =  1 + k*x/1! + 2*k^2*x^2/2! + 5*k^3*x^3/3! + 15*k^4 x^4/4! + 52*k^5*x^5/5! + ...
Square array begins:
1,   1,     1,      1,      1,       1,  ...
0,   1,     2,      3,      4,       5,  ...
0,   2,     8,     18,     32,      50,  ...
0,   5,    40,    135,    320,     625,  ...
0,  15,   240,   1215,   3840,    9375,  ...
0,  52,  1664,  12636,  53248,  162500,  ...
		

Crossrefs

Columns k=0..3 give A000007, A000110, A055882, A247452.
Rows n=0..2 give A000012, A001477, A001105.
Main diagonal gives A292914.

Programs

  • Maple
    A:= (n, k)-> k^n * combinat[bell](n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 26 2017
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[Exp[k x] - 1], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-((-1)^(i + 1) (i - 1) + i + 3) k x/4, 1, {i, 0, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

O.g.f. of column k: 1/(1 - k*x/(1 - k*x/(1 - k*x/(1 - 2*k*x/(1 - k*x/(1 - 3*k*x/(1 - k*x/(1 - 4*k*x/(1 - ...))))))))), a continued fraction.
E.g.f. of column k: exp(exp(k*x)-1).
A(n,k) = exp(-1)*k^n*Sum_{j>=0} j^n/j!.
A(n,k) = k^n * Bell(n). - Alois P. Heinz, Sep 26 2017