A292930 Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence.
1, 2, 8, 3, 24, 60, 4, 48, 240, 480, 5, 80, 600, 2400, 4200, 6, 120, 1200, 7200, 25200, 40320, 7, 168, 2100, 16800, 88200, 282240, 423360, 8, 224, 3360, 33600, 235200, 1128960, 3386880, 4838400, 9, 288, 5040, 60480, 529200, 3386880, 15240960, 43545600, 59875200, 10, 360, 7200, 100800, 1058400, 8467200, 50803200, 217728000, 598752000, 798336000
Offset: 1
Examples
n=1 => AAA -> T(1,3)=1; n=2 => AAA,BBB -> T(2,3)=2; AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB -> T(2,4)=8. Triangle begins: 1; 2, 8; 3, 24, 60; 4, 48, 240, 480; 5, 80, 600, 2400, 4200; ...
Crossrefs
Programs
-
PARI
T(n, k) = binomial(k,3)*n!/(n+2-k)!; tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Sep 29 2017
Formula
T(n, k) = binomial(k,3)*n!/(n+2-k)!.
Comments