A292984 Bi-unitary superabundant numbers: numbers n such that bsigma(n)/n > bsigma(m)/m for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).
1, 2, 6, 24, 96, 120, 480, 840, 3360, 7560, 30240, 83160, 332640, 1081080, 4324320, 17297280, 69189120, 73513440, 294053760, 1176215040, 1396755360, 5587021440
Offset: 1
Programs
-
Mathematica
fun[p_,e_]:=If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)];bsigma[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; a = {}; rmax = 0; Do[r = bsigma[n]/n; If[r > rmax, AppendTo[a, n]; rmax = r], {n, 1000}]; a
Extensions
a(14)-a(22) from Amiram Eldar, Dec 06 2018
Comments