A293006 Expansion of 2*x^2*(x+1) / (2*x^3-3*x+1).
0, 0, 2, 8, 24, 68, 188, 516, 1412, 3860, 10548, 28820, 78740, 215124, 587732, 1605716, 4386900, 11985236, 32744276, 89459028, 244406612, 667731284, 1824275796, 4984014164, 13616579924, 37201188180, 101635536212, 277673448788, 758617970004, 2072582837588
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2289
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA] (2017).
- Index entries for linear recurrences with constant coefficients, signature (3,0,-2).
Programs
-
Maple
f:= gfun:-rectoproc({a(n) = 3*a(n-1) - 2*a(n-3),a(0)=0,a(1)=0,a(2)=2,a(3)=8},a(n),remember): map(f, [$0..100]); # Robert Israel, Sep 28 2017
-
Mathematica
Join[{0}, LinearRecurrence[{3, 0, -2}, {0, 2, 8}, 30]] (* Jean-François Alcover, Sep 19 2018 *)
-
PARI
concat(vector(2), Vec(2*x^2*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 28 2017
Formula
a(n) = 2*A293005(n-1), a(0) = 0.
From Colin Barker, Sep 28 2017: (Start)
a(n) = (-8 + (1-sqrt(3))^(1+n) + (1+sqrt(3))^(1+n)) / 6 for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)
Comments