A293060
Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional subperiodic groups in n-dimensional space, not counting enantiomorphs.
Original entry on oeis.org
1, 2, 2, 10, 7, 17, 32, 67, 80, 219, 227, 343, 1076, 1594, 4783, 955
Offset: 0
The triangle begins:
1;
2, 2;
10, 7, 17;
32, 67, 80, 219;
227, 343, 1076, 1594, 4783;
955, ...
- M. I. Aroyo et al, Bilbao Crystallographic Server
- International Union of Crystallography, International Tables for Crystallography, volumes A and E.
- A. F. Palistrant, Complete scheme of four-dimensional crystallographic symmetry groups, Crystallography Reports, 57 (2012), 471-477.
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- B. Souvignier, The four-dimensional magnetic point and space groups, Z. Kristallogr., 221 (2006), 77-82.
- Wikipedia: Space group, Crystallographic point group, Line group, Frieze group, Wallpaper group, Rod group, Layer group
- Index entries for sequences related to groups
A293061
Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional subperiodic groups in n-dimensional space, counting enantiomorphs.
Original entry on oeis.org
1, 2, 2, 10, 7, 17, 32, 75, 80, 230, 271, 343, 1091, 1594, 4894, 955
Offset: 0
The triangle begins:
1;
2, 2;
10, 7, 17;
32, 75, 80, 230;
271, 343, 1091, 1594, 4894;
955, ...
- M. I. Aroyo et al, Bilbao Crystallographic Server
- International Union of Crystallography, International Tables for Crystallography, volumes A and E.
- A. F. Palistrant, Complete scheme of four-dimensional crystallographic symmetry groups, Crystallography Reports, 57 (2012), 471-477.
- W. Plesken and T. Schulz, CARAT Homepage
- W. Plesken and T. Schulz, CARAT Homepage [Cached copy in pdf format (without subsidiary pages), with permission]
- B. Souvignier, The four-dimensional magnetic point and space groups, Z. Kristallogr., 221 (2006), 77-82.
- Wikipedia: Space group, Crystallographic point group, Line group, Frieze group, Wallpaper group, Rod group, Layer group
- Index entries for sequences related to groups
A293062
Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional magnetic subperiodic groups in n-dimensional space, not counting enantiomorphs.
Original entry on oeis.org
2, 5, 7, 31, 31, 80, 122, 360, 528, 1594, 1025
Offset: 0
The triangle begins:
2;
5, 7;
31, 31, 80;
122, 360, 528, 1594;
1025, ...
- H. Grimmer, Comments on tables of magnetic space groups, Acta Cryst., A65 (2009), 145-155.
- D. B. Litvin, Magnetic Group Tables
- A. F. Palistrant and S. V. Jablan, Enantiomorphism of three-dimensional space and line multiple antisymmetry groups, Publications de l'Institut Mathématique, 49(63) (1991), 51-60.
- B. Souvignier, The four-dimensional magnetic point and space groups, Z. Kristallogr., 221 (2006), 77-82.
- Index entries for sequences related to groups
A307291
Number of colored (or magnetic) space groups in dimension n, including enantiomorphs.
Original entry on oeis.org
2, 7, 80, 1651, 62227
Offset: 0
For non-magnetic space groups see
A006227.
Showing 1-4 of 4 results.
Comments