cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293074 Primes of the form 2^q * 3^r * 11^s - 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 23, 31, 43, 47, 53, 71, 107, 127, 131, 191, 197, 241, 263, 383, 431, 593, 647, 863, 967, 971, 1151, 1187, 1451, 1583, 2111, 2591, 2903, 3167, 4373, 4751, 5323, 5807, 6143, 6911, 7127, 8191, 8447, 8747, 10691, 12671, 13121, 15551, 15971, 21383, 23327
Offset: 1

Views

Author

Muniru A Asiru, Oct 01 2017

Keywords

Comments

Mersenne primes A000668 occur when (q, r, s) = (q, 0, 0) with q > 0.
a(2) = 3 is a Mersenne prime but a(3) = 5 is not a Mersenne prime.
For n > 2, all terms = {1, 5} mod 6.

Examples

			3 = a(2) = 2^2 * 3^0 * 11^0 - 1.
131 = a(15) = 2^2 * 3^1 * 11^1 - 1.
list of (q, r, s): (0, 1, 0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 2, 0), (3, 1, 0), (5, 0, 0), (2, 0, 1), (4, 1, 0), (1, 3, 0), ...
		

Crossrefs

Cf. A000668, A005105, Primes of the form 2^q * 3^r * b^s - 1: A293194 (b = 5), A293199 (b = 7).

Programs

  • GAP
    K:=10^5+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;    I:=[3,11];;
    B:=List(A,i->Elements(Factors(i+1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A293074:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
  • Maple
    N:= 10^5: # to get all terms < N
    S:=select(isprime, {seq(seq(seq(2^q*3^r*11^s-1, q=0..ilog2(floor(N/3^r/11^s))),r=0..floor(log[3](N/11^s))),s=0..floor(log[11](N)))}):
    sort(convert(S,list)); # Robert Israel, Oct 03 2017
  • Mathematica
    With[{nn=20},Take[Select[Union[Flatten[Table[2^q 3^r 11^s-1,{q,0,nn},{r,0,nn},{s,0,nn}]]],PrimeQ],60]] (* Harvey P. Dale, May 12 2019 *)