cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297487 Number of maximal matchings in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

3, 14, 342, 5256, 252360, 7950960, 582346800, 30400755840, 3055726477440, 234650484230400, 30479146156166400, 3193083216360576000, 515174657767010841600, 69927761804930559129600, 13622234004598726450944000, 2307722078006148475736064000
Offset: 1

Views

Author

Eric W. Weisstein, Dec 30 2017

Keywords

Crossrefs

Cf. A293075.

Programs

  • Mathematica
    Table[3 n! HypergeometricPFQ[{(1 - n)/2, -n, -n/2}, {1}, -4] - If[Mod[n, 2] == 0, 2 (n!/(n/2)!)^3, 0], {n, 20}]
  • PARI
    a(n)={if(n%2==0, binomial(n, n/2)*(n/2)!, 0)^3 + sum(k=0, (n-1)\2, 3*binomial(n, k)^2*binomial(n, 2*k)*binomial(2*k, k)*k!^2*(n-k)!)} \\ Andrew Howroyd, Dec 30 2017

Extensions

Terms a(6) and beyond from Andrew Howroyd, Dec 30 2017

A297527 Number of maximum matchings in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

3, 8, 324, 1728, 216000, 1728000, 444528000, 4741632000, 2073989836800, 27653197824000, 18403203151872000, 294451250429952000, 277246884511973376000, 5175275177556836352000, 6549957646595371008000000, 139732429794034581504000000, 228835142526030632976384000000
Offset: 1

Views

Author

Eric W. Weisstein, Dec 31 2017

Keywords

Comments

For even n, a maximum matching will be a perfect matching. For odd n there will be one unmatched vertex. - Andrew Howroyd, Jan 01 2018

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n, Floor[n/2]]^3 Floor[n/2]! Ceiling[n/2]!^2 (2 - (-1)^n), {n, 20}]
    RecurrenceTable[{-8 (1 + n)^3 (2 + n) (30 + 34 n + 9 n^2) a[n] + 12 (2 + n) (5 + 5 n + n^2) a[1 + n] + (3 + n) (5 + 16 n + 9 n^2) a[2 + n] == 0, a[1] == 3, a[2] == 8}, a[n], {n, 20}]
  • PARI
    a(n)={if(n%2==0, binomial(n,n/2)^3*(n/2)!^3, 3*binomial(n,(n-1)/2)^3*((n+1)/2)!^2*((n-1)/2)!)} \\ Andrew Howroyd, Jan 01 2018

Formula

a(n) = binomial(n, floor(n/2))^3 * floor(n/2)! * ceiling(n/2)!^2 * (2-(-1)^n). - Andrew Howroyd, Jan 01 2018
-8*(n+2)*(9*n^2+34*n+30)*(n+1)^3*a(n)+12*(n+2)*(n^2+5*n+5)*a(n+1)+(n+3)*(9*n^2+16*n+5)*a(n+2) = 0. - Eric W. Weisstein, Jan 06 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 01 2018
Showing 1-2 of 2 results.