cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A293119 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>k} exp(-x^i).

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 0, -2, -1, 1, 0, 0, -6, 1, 1, 0, 0, -6, -12, 19, 1, 0, 0, 0, -24, 0, 151, 1, 0, 0, 0, -24, -120, 240, 1091, 1, 0, 0, 0, 0, -120, -360, 2520, 7841, 1, 0, 0, 0, 0, -120, -720, 0, 21840, 56519, 1, 0, 0, 0, 0, 0, -720, -5040, 20160, 181440, 396271
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2017

Keywords

Examples

			Square array begins:
    1,   1,    1,    1, ...
   -1,   0,    0,    0, ...
   -1,  -2,    0,    0, ...
   -1,  -6,   -6,    0, ...
    1, -12,  -24,  -24, ...
   19,   0, -120, -120, ...
		

Crossrefs

Columns k=0..2 give A293116, A293117, A293118.
Rows n=0..1 give A000012, (-1)*A000007.
Main diagonal gives A000007.
A(n,n-1) gives (-1)*A000142(n).
Cf. A293053.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, -add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1+k..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 30 2017
  • Mathematica
    A[0, _] = 1;
    A[n_, k_] /; 0 <= k <= n := A[n, k] = -Sum[A[n-j, k] Binomial[n-1, j-1] j!, {j, k+1, n}];
    A[, ] = 0;
    Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)

Formula

E.g.f. of column k: exp(x^(k+1)/(x-1)).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = - Sum_{i=k..n-1} (i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k.

A293122 E.g.f.: exp(-x^2/(1+x)).

Original entry on oeis.org

1, 0, -2, 6, -12, 0, 240, -2520, 21840, -181440, 1481760, -11642400, 80498880, -311351040, -4739454720, 183437654400, -4300276780800, 88851284121600, -1754954007206400, 34107089784768000, -659574028252339200, 12724865943229440000, -244046146272658329600
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2017

Keywords

Crossrefs

Column k=1 of A293134.
Cf. A293117.

Programs

  • Mathematica
    CoefficientList[Series[E^(-x^2/(1+x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(-x^2/(1+x))))

Formula

a(n) = (-1)^n * A293117(n).
Showing 1-2 of 2 results.