A293133 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^(k+1)/(1+x)).
1, 1, 1, 1, 0, -1, 1, 0, 2, 1, 1, 0, 0, -6, 1, 1, 0, 0, 6, 36, -19, 1, 0, 0, 0, -24, -240, 151, 1, 0, 0, 0, 24, 120, 1920, -1091, 1, 0, 0, 0, 0, -120, -360, -17640, 7841, 1, 0, 0, 0, 0, 120, 720, 0, 183120, -56519, 1, 0, 0, 0, 0, 0, -720, -5040, 20160, -2116800
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, ... 1, 0, 0, 0, ... -1, 2, 0, 0, ... 1, -6, 6, 0, ... 1, 36, -24, 24, ... -19, -240, 120, -120, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Ruby
def f(n) return 1 if n < 2 (1..n).inject(:*) end def ncr(n, r) return 1 if r == 0 (n - r + 1..n).inject(:*) / (1..r).inject(:*) end def A(k, n) ary = [1] (1..n).each{|i| ary << (-1) ** (k % 2) * (k..i - 1).inject(0){|s, j| s + (-1) ** (j % 2) * f(j + 1) * ncr(i - 1, j) * ary[i - 1 - j]}} ary end def A293133(n) a = [] (0..n).each{|i| a << A(i, n - i)} ary = [] (0..n).each{|i| (0..i).each{|j| ary << a[i - j][j] } } ary end p A293133(20)
Formula
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = (-1)^k * Sum_{i=k..n-1} (-1)^i*(i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k.