cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293133 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^(k+1)/(1+x)).

Original entry on oeis.org

1, 1, 1, 1, 0, -1, 1, 0, 2, 1, 1, 0, 0, -6, 1, 1, 0, 0, 6, 36, -19, 1, 0, 0, 0, -24, -240, 151, 1, 0, 0, 0, 24, 120, 1920, -1091, 1, 0, 0, 0, 0, -120, -360, -17640, 7841, 1, 0, 0, 0, 0, 120, 720, 0, 183120, -56519, 1, 0, 0, 0, 0, 0, -720, -5040, 20160, -2116800
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2017

Keywords

Examples

			Square array begins:
     1,    1,   1,    1, ...
     1,    0,   0,    0, ...
    -1,    2,   0,    0, ...
     1,   -6,   6,    0, ...
     1,   36, -24,   24, ...
   -19, -240, 120, -120, ...
		

Crossrefs

Columns k=0..2 give A111884, A293120, A293121.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.
A(n,n-1) gives A000142(n).

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (-1) ** (k % 2) * (k..i - 1).inject(0){|s, j| s + (-1) ** (j % 2) * f(j + 1) * ncr(i - 1, j) * ary[i - 1 - j]}}
      ary
    end
    def A293133(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A293133(20)

Formula

A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = (-1)^k * Sum_{i=k..n-1} (-1)^i*(i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k.