cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293167 a(n) = Sum_{k = 1..n} d(d(d(k))), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 37, 39, 42, 44, 46, 48, 51, 53, 55, 57, 60, 62, 65, 67, 70, 72, 74, 76, 78, 80, 82, 84, 87, 89, 92, 94, 97, 100, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 131, 133, 137, 139, 141, 144, 146, 148, 151, 153, 156, 158
Offset: 1

Views

Author

N. J. A. Sloane, Oct 17 2017

Keywords

Crossrefs

Part of the sequence A000005, A006218, A010553, A036450, A139130.

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[0, DivisorSigma[0, DivisorSigma[0, n]]], {n, 80}]] (* Alonso del Arte, Oct 17 2017 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(numdiv(numdiv(k)))); \\ Michel Marcus, Oct 17 2017
    
  • PARI
    first(n) = {my(v = vector(n)); v[1] = 1; for(i=2,n,v[i] = v[i-1] + numdiv(numdiv(numdiv(i)))); v} \\ David A. Corneth, Oct 17 2017

Formula

a(1) = 1; a(n + 1) = a(n) + A036450(n + 1) for n > 0. - David A. Corneth, Oct 17 2017
a(n) = (1 + o(1)) * c * n * log(log(log(n))), where c > 0 is a constant (Kátai, 1969). - Amiram Eldar, Apr 17 2024