A293181 Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles (1 <= k <= 2n).
1, 1, 1, 3, 2, 1, 1, 7, 10, 9, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1
Offset: 1
Examples
Triangle begins: 1, 1; 1, 3, 2, 1; 1, 7, 10, 9, 3, 1; 1, 15, 38, 53, 34, 18, 4, 1; 1, 31, 130, 265, 261, 195, 80, 30, 5, 1; 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1; 1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1; ... For T(2,2)=3, the row patterns are AABB, ABAB, and ABBA. The loop patterns are AAAB, AABB, and ABAB. - _Robert A. Russell_, Apr 24 2018
Links
- Alois P. Heinz, Rows n = 1..100, flattened (first 30 rows from Andrew Howroyd)
- Ira Gessel, What is the number of achiral color patterns for a row of n colors containing k different colors?, mathoverflow, Jan 30 2018.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Crossrefs
Programs
-
Mathematica
(* Ach[n, k] is the number of achiral color patterns for a row or loop of n colors containing k different colors *) Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0], OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}], True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1] + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]] Table[Ach[n, k], {n, 2, 14, 2}, {k, 1, n}] // Flatten (* Robert A. Russell, Feb 06 2018 *) Table[Drop[MatrixPower[Table[Switch[j-i, 0, i-1, 1, 1, 2, 1, _, 0], {i, 1, 2n+1}, {j, 1, 2n+1}], n][[1]], 1], {n, 1, 10}] // Flatten (* Robert A. Russell, Apr 14 2018 *) Aeven[m_, k_] := Aeven[m, k] = If[m>0, k Aeven[m-1, k] + Aeven[m-1, k-1] + Aeven[m-1, k-2], Boole[m == 0 && k == 0]] Table[Aeven[m, k], {m, 1, 10}, {k, 1, 2m}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
-
PARI
\\ see A056391 for Polya enumeration functions T(n,k) = 2*NonequivalentStructsExactly(CylinderPerms(2,n),k) - stirling(2*n,k,2);
-
PARI
seq(n)={Vec(serlaplace(exp(y*(exp(x + O(x*x^n))-1)+(1/2)*y^2*(exp(2*x + O(x*x^n))-1))) - 1)} {my(T=seq(10)); for(n=1, #T, for(k=1, 2*n, print1(polcoeff(T[n], k), ", ")); print)} \\ Andrew Howroyd, Jan 31 2018
Formula
T(n,k) = coefficient of t^k x^n/n! in exp(t*(exp(x)-1)+(1/2)*t^2*(exp(2*x)-1)). - Ira M. Gessel, Jan 30 2018
T(m,k) = [m>0]*(k*T(m-1,k)+T(m-1,k-1)+T(m-1,k-2)) + [m==0]*[k==0]. - Robert A. Russell, Apr 24 2018
Conjecture: T(n,k) = R(n,k)-R(n,k-1), with R(n,k) = Sum_{m=0..k} m^n*A000085(m)*A038205(k-m)/(m!*(k-m)!). - Mikhail Kurkov, Jun 26 2018
Comments