cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293181 Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles (1 <= k <= 2n).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 1, 7, 10, 9, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 01 2017

Keywords

Comments

See A002872 for detailed description.
T(m,k) is the number of achiral color patterns in a row or loop of length 2m using exactly k different colors. Two color patterns are equivalent if we permute the colors. - Robert A. Russell, Apr 24 2018
T(n,k) = coefficient of x^k for A(2,n)(x) in Gilbert and Riordan's article. - Robert A. Russell, Jun 14 2018

Examples

			Triangle begins:
  1,   1;
  1,   3,    2,    1;
  1,   7,   10,    9,     3,     1;
  1,  15,   38,   53,    34,    18,     4,    1;
  1,  31,  130,  265,   261,   195,    80,   30,    5,    1;
  1,  63,  422, 1221,  1700,  1696,  1016,  515,  155,   45,   6,  1;
  1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
  ...
For T(2,2)=3, the row patterns are AABB, ABAB, and ABBA.  The loop patterns are AAAB, AABB, and ABAB. - _Robert A. Russell_, Apr 24 2018
		

Crossrefs

Row sums are A002872.
Maximum row values are A002873.
Number of achiral color patterns of length odd n in A140735.
Column k=3 gives A056182.

Programs

  • Mathematica
    (* Ach[n, k] is the number of achiral color patterns for a row or loop of n
      colors containing k different colors *)
    Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
      OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
      True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
    Table[Ach[n, k], {n, 2, 14, 2}, {k, 1, n}] // Flatten
    (* Robert A. Russell, Feb 06 2018 *)
    Table[Drop[MatrixPower[Table[Switch[j-i, 0, i-1, 1, 1, 2, 1, _, 0],
      {i, 1, 2n+1}, {j, 1, 2n+1}], n][[1]], 1], {n, 1, 10}] // Flatten
    (* Robert A. Russell, Apr 14 2018 *)
    Aeven[m_, k_] := Aeven[m, k] = If[m>0, k Aeven[m-1, k] + Aeven[m-1, k-1]
      + Aeven[m-1, k-2], Boole[m == 0 && k == 0]]
    Table[Aeven[m, k], {m, 1, 10}, {k, 1, 2m}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = 2*NonequivalentStructsExactly(CylinderPerms(2,n),k) - stirling(2*n,k,2);
    
  • PARI
    seq(n)={Vec(serlaplace(exp(y*(exp(x + O(x*x^n))-1)+(1/2)*y^2*(exp(2*x + O(x*x^n))-1))) - 1)}
    {my(T=seq(10)); for(n=1, #T, for(k=1, 2*n, print1(polcoeff(T[n], k), ", ")); print)} \\ Andrew Howroyd, Jan 31 2018

Formula

T(n,k) = coefficient of t^k x^n/n! in exp(t*(exp(x)-1)+(1/2)*t^2*(exp(2*x)-1)). - Ira M. Gessel, Jan 30 2018
T(m,k) = [m>0]*(k*T(m-1,k)+T(m-1,k-1)+T(m-1,k-2)) + [m==0]*[k==0]. - Robert A. Russell, Apr 24 2018
Conjecture: T(n,k) = R(n,k)-R(n,k-1), with R(n,k) = Sum_{m=0..k} m^n*A000085(m)*A038205(k-m)/(m!*(k-m)!). - Mikhail Kurkov, Jun 26 2018