cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293184 Numbers k such that bphi(k) = bphi(k+1), where bphi(k) is the bi-unitary analog of Euler's totient function (A116550).

Original entry on oeis.org

1, 14, 20, 57, 187, 188, 916, 1603, 93928, 142891, 432976, 549815, 692259, 773887, 872191, 4297168, 9478088, 127162432, 127991488, 129015616, 132527167
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2017

Keywords

Comments

187 is the first solution to bphi(k) = bphi(k+1) = bphi(k+2).
a(22) > 1.6*10^9, if it exists. - Amiram Eldar, Jul 16 2022

Examples

			14 is in the sequence since bphi(14) = bphi(15) = 9.
		

Crossrefs

Programs

  • Mathematica
    bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]},   Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; a={}; b1=0; Do[b2 = bphi[k];If[b1 == b2, a = AppendTo[a, k - 1]]; b1 = b2, {k, 1, 10^3}]; a (* after Jean-François Alcover at A116550 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biuphi(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1));
    isok(n) = biuphi(n) == biuphi(n+1);
    lista(nn) = {x = biuphi(1); for (n=2, nn, y = biuphi(n); if (x==y, print1(n-1, ", ")); x = y;);} \\ Michel Marcus, Nov 09 2017

Extensions

a(10) from Michel Marcus, Nov 11 2017
a(11) from Michel Marcus, Nov 12 2017
a(12)-a(21) from Amiram Eldar, Jul 16 2022