cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A326403 Numbers k such that iphi(k) = iphi(k+1), where iphi(k) is an infinitary analog to the Euler totient function (A091732).

Original entry on oeis.org

1, 20, 35, 143, 194, 208, 740, 1220, 1299, 1419, 1803, 1892, 3705, 3716, 3843, 5186, 5635, 7868, 10659, 13634, 13905, 17948, 18507, 18914, 18980, 21007, 25388, 25545, 30380, 31599, 32304, 34595, 37820, 47067, 70394, 73059, 78064, 87856, 94874, 105908, 116963
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2019

Keywords

Examples

			20 is in the sequence since iphi(20) = iphi(21) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Times @@ (Flatten @(f @@@ FactorInteger[n]) - 1); a1 = 1; s = {}; Do[a2 = a[n]; If[a1 == a2, AppendTo[s, n - 1]]; a1 = a2, {n, 2, 10^5}]; s

A349307 Numbers k such that A072911(k) = A072911(k+1) > 1.

Original entry on oeis.org

80, 135, 296, 343, 375, 567, 624, 728, 783, 944, 1160, 1431, 1592, 1624, 1647, 1808, 1863, 2024, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3087, 3320, 3429, 3536, 3591, 3624, 3752, 3992, 4023, 4184, 4239, 4375, 4400, 4455, 4624, 4671, 4887, 4912, 4913, 5048, 5103
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Comments

Without the restriction that A072911(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 4912, 5750, 6858, ...

Examples

			80 is a term since A072911(80) = A072911(81) = 2.
		

Crossrefs

Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349308.

Programs

  • Mathematica
    f[p_, e_] := EulerPhi[e]; ephi[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[5000], ephi[#] == ephi[# + 1] > 1 &]

A349308 Numbers k such that A321167(k) = A321167(k+1) > 1.

Original entry on oeis.org

80, 135, 296, 343, 375, 624, 728, 1160, 1431, 1592, 1624, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4671, 4887, 4913, 5048, 5144, 5264, 5319, 5480, 5696, 6183, 6344, 6375, 6591, 6615, 6776, 6858, 6859, 7479, 7624, 7640
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Comments

Without the restriction that A321167(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 6858, 13375, 22625, ...

Examples

			80 is a term since A321167(80) = A321167(81) = 3.
		

Crossrefs

Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349307.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Select[Range[8000], euphi[#] == euphi[# + 1] > 1 &]

A332316 Numbers k such that k and k + 1 have the same value of the norm of the totient function for Gaussian integers (A103224).

Original entry on oeis.org

4, 5, 35, 51, 154, 804, 3596, 6200, 7595, 916538, 1638039, 2794805, 6804035, 24724472, 40128444, 52424787, 69918849, 82954611, 124077316, 160245605, 204215514, 361275551, 371254235, 661831521, 1314759754, 1695554762, 2246110022, 2378746131, 2889320799, 4181707719
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

The corresponding common values A103224(k) = A103224(k+1) are 8, 8, 288, 640, 7200, 139392, 3744000, 5760000, ...

Examples

			4 is a term since norm(phi(4)) = norm(phi(5)) = 8.
		

Crossrefs

Programs

  • Mathematica
    phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f = FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Select[Range[10^3], Abs[phi[#]]^2 == Abs[phi[# + 1]]^2 &] (* after T. D. Noe at A103222 *)

A349309 Numbers k such that A254926(k) = A254926(k+1).

Original entry on oeis.org

7, 26, 124, 342, 1330, 2196, 12166, 24388, 29790, 79506, 103822, 148876, 205378, 226980, 300762, 357910, 493038, 571786, 1030300, 1092726, 1225042, 2248090, 2685618, 3307948, 3442950, 3869892, 4657462, 5177716, 5735338, 6967870, 7645372, 9393930, 11089566, 11697082
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Examples

			7 is a term since A254926(7) = A254926(8) = 7.
		

Crossrefs

Cf. A254926.

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, p^e, p^e - p^(e - 3)]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], s[#] == s[# + 1] &]
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A349309_gen(startvalue=1): # generator of terms >= startvalue
        a = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(max(startvalue,1)).items())
        for k in count(max(startvalue,1)):
            b = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(k+1).items())
            if a == b:
                yield k
            a = b
    A349309_list = list(islice(A349309_gen(),10)) # Chai Wah Wu, Jan 24 2022

A294030 Values of bphi(k) = bphi(k+1), where bphi is the bi-unitary analog of Euler's totient function (A116550).

Original entry on oeis.org

1, 9, 14, 42, 161, 161, 798, 1400, 86156, 123656, 419430, 387868, 508797, 772121, 870233, 4162866, 8754569, 126168912, 126991491, 128007618, 131491736
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2017

Keywords

Comments

The bi-unitary totient function of numbers k such that k and k+1 have the same function value (A293184).

Examples

			9 is in the sequence since 9 = bphi(14) = bphi(15).
		

Crossrefs

The bi-unitary version of A003275.

Programs

  • Mathematica
    bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; a={}; b1=0; Do[b2 = bphi[k]; If[b1 == b2, a = AppendTo[a, b1]]; b1 = b2, {k, 1, 10^2}]; a (* after Jean-François Alcover at A116550 *)

Formula

a(n) = A116550(A293184(n)).

Extensions

a(10)-a(11) from Michel Marcus, Nov 14 2017
a(12)-a(21) from Amiram Eldar, Jul 16 2022

A332530 Numbers k such that k and k + 1 has the same value of A319445, the equivalent of the Euler totient function in the ring of Eisenstein integers.

Original entry on oeis.org

34, 51, 152, 679, 1065, 1845, 6525, 12122, 12970, 15656, 38607, 48398, 175473, 272935, 401505, 953342, 1035895, 1210054, 1222988, 1406665, 1589245, 1607095, 2108186, 2116975, 2272425, 2500615, 2751160, 3399591, 4542225, 5298559, 5412986, 6813585, 6898736, 7115553
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2020

Keywords

Examples

			34 is a term since A319445(34) = A319445(35) = 864.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 3, 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; e1 = eisPhi[1]; Do[e2 = eisPhi[n]; If[e1 == e2, AppendTo[seq, n - 1]]; e1 = e2, {n, 2, 10^6}]; seq

A385743 Numbers k such that A384247(k) = A384247(k+1).

Original entry on oeis.org

1, 20, 27, 35, 63, 64, 104, 143, 194, 208, 740, 836, 1220, 1299, 1419, 1803, 1892, 2625, 3255, 3705, 3716, 3843, 4096, 5184, 5186, 5635, 5695, 7868, 10659, 13365, 16904, 17948, 18507, 18914, 21007, 22935, 25388, 25545, 27675, 30380, 31599, 32304, 32864, 34595
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2025

Keywords

Comments

63 is the only number k below 10^11 such that A384247(k) = A384247(k+1) = A384247(k+2). Are there any other such terms?

Examples

			1 is a term since A384247(1) = A384247(2) = 1.
20 is a term since A384247(20) = A384247(21) = 12.
		

Crossrefs

Cf. A384247.
Similar sequences: A001274, A287055, A293184, A301866, A326403, A349307.

Programs

  • Mathematica
    f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n]; Select[Range[35000], iphi[#] == iphi[# + 1] &]
  • PARI
    iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2)))); }
    list(lim) = {my(s1 = iphi(1), s2); for(k = 2, lim, s2 = iphi(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2);}
Showing 1-8 of 8 results.