cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293199 Primes of the form 2^q * 3^r * 7^s - 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 41, 47, 53, 71, 83, 97, 107, 127, 167, 191, 223, 251, 293, 383, 431, 503, 587, 647, 863, 881, 971, 1151, 1511, 1567, 2267, 2351, 2591, 2687, 3023, 3527, 3583, 4373, 4703, 4801, 6047, 6143
Offset: 1

Views

Author

Muniru A Asiru, Oct 02 2017

Keywords

Comments

Mersenne primes A000668 occur when (q, r, s) = (q, 0 ,0) with q > 0.
a(2) = 3 is a Mersenne prime but a(3) = 5 is not.
For n > 2, all terms = {1, 5} mod 6.

Examples

			3 is a member because it is a prime number and 2^2 * 3^0 * 7^0 - 1 = 3.
503 is a member because it is a prime number and 2^3 * 3^2 * 7^1 - 1 = 503.
list of (q, r, s): (0, 1 ,0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 0, 1), (1, 2, 0), (3, 1, 0),(5, 0, 0), (1, 1, 1), (4, 1, 0), (1, 3, 0), (3, 2, 0), (2, 1, 1), ...
		

Crossrefs

Programs

  • GAP
    K:=10^5+1;; # to get all terms <=K
    A:=Filtered([1..K],IsPrime);; I:=[3,7];;
    B:=List(A,i->Elements(Factors(i+1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));
    A293199:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
  • Maple
    N:= 10^4: # for terms <= N
    S:= {1}:
    for p in {2,3,7} do S:= map(proc(s) local i; seq(s*p^i,i=0..floor(log[p](N/s))) end proc, S) od:
    sort(convert(select(isprime,map(`-`,S,1)),list)); # Robert Israel, Dec 17 2020