A293199 Primes of the form 2^q * 3^r * 7^s - 1.
2, 3, 5, 7, 11, 13, 17, 23, 31, 41, 47, 53, 71, 83, 97, 107, 127, 167, 191, 223, 251, 293, 383, 431, 503, 587, 647, 863, 881, 971, 1151, 1511, 1567, 2267, 2351, 2591, 2687, 3023, 3527, 3583, 4373, 4703, 4801, 6047, 6143
Offset: 1
Keywords
Examples
3 is a member because it is a prime number and 2^2 * 3^0 * 7^0 - 1 = 3. 503 is a member because it is a prime number and 2^3 * 3^2 * 7^1 - 1 = 503. list of (q, r, s): (0, 1 ,0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 0, 1), (1, 2, 0), (3, 1, 0),(5, 0, 0), (1, 1, 1), (4, 1, 0), (1, 3, 0), (3, 2, 0), (2, 1, 1), ...
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Programs
-
GAP
K:=10^5+1;; # to get all terms <=K A:=Filtered([1..K],IsPrime);; I:=[3,7];; B:=List(A,i->Elements(Factors(i+1)));; C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i))); A293199:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
-
Maple
N:= 10^4: # for terms <= N S:= {1}: for p in {2,3,7} do S:= map(proc(s) local i; seq(s*p^i,i=0..floor(log[p](N/s))) end proc, S) od: sort(convert(select(isprime,map(`-`,S,1)),list)); # Robert Israel, Dec 17 2020
Comments