cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293204 G.f.: Product_{m>0} (1+x^m+2!*x^(2*m)).

Original entry on oeis.org

1, 1, 3, 2, 6, 7, 12, 13, 22, 26, 42, 46, 73, 80, 116, 139, 194, 226, 306, 358, 482, 558, 735, 856, 1108, 1300, 1657, 1926, 2426, 2834, 3530, 4110, 5082, 5898, 7234, 8409, 10216, 11860, 14304, 16568, 19891, 22990, 27470, 31670, 37630, 43382, 51274, 58982, 69450
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------
     5             -> one 5                  -> 1!       (= 1)
   = 4 + 1         -> one 4 and one 1        -> 1!*1!    (= 1)
   = 3 + 2         -> one 3 and one 2        -> 1!*1!    (= 1)
   = 3 + 1 + 1     -> one 3 and two 1        -> 1!*2!    (= 2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 2!*1!    (= 2)
--------------------------------------------------------------
                                                a(5)      = 7.
For n = 6,
    partition      |                         |
--------------------------------------------------------------
     6             -> one 6                  -> 1!       (= 1)
   = 5 + 1         -> one 5 and one 1        -> 1!*1!    (= 1)
   = 4 + 2         -> one 4 and one 2        -> 1!*1!    (= 1)
   = 4 + 1 + 1     -> one 4 and two 1        -> 1!*2!    (= 2)
   = 3 + 3         -> two 3                  -> 2!       (= 2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1!*1!*1! (= 1)
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 2!*2!    (= 4)
--------------------------------------------------------------
                                                a(6)      = 12.
		

Crossrefs

Column k=2 of A293202.
Cf. A293072.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*j!, j=0..min(2, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^k + 2*x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2017 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4 * sqrt(Pi) * n^(3/4)), where c = Pi^2/3 - arctan(sqrt(7))^2 + log(2)^2/4 + polylog(2, -1/4 - I*sqrt(7)/4) + polylog(2, -1/4 + I*sqrt(7)/4) = 1.323865936864425754643630663383779192757247984691212163137... - Vaclav Kotesovec, Oct 02 2017
Equivalently, c = -polylog(2, -1/2 + I*sqrt(7)/2) - polylog(2, -1/2 - I*sqrt(7)/2). - Vaclav Kotesovec, Oct 05 2017