A293212 Binary XOR of prime divisors of n.
2, 3, 2, 5, 1, 7, 2, 3, 7, 11, 1, 13, 5, 6, 2, 17, 1, 19, 7, 4, 9, 23, 1, 5, 15, 3, 5, 29, 4, 31, 2, 8, 19, 2, 1, 37, 17, 14, 7, 41, 6, 43, 9, 6, 21, 47, 1, 7, 7, 18, 15, 53, 1, 14, 5, 16, 31, 59, 4, 61, 29, 4, 2, 8, 10, 67, 19, 20, 0, 71, 1, 73, 39, 6, 17
Offset: 2
Examples
a(6) = a(24) = 2 XOR 3 = 1. a(2145) = 3 XOR 5 XOR 11 XOR 13 = 0.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..20000
Programs
-
Maple
a:= proc(n) local d, r; r:=0; for d in numtheory [factorset](n) do r:= Bits[Xor](r, d) od; r end: seq(a(n), n=2..100); # Alois P. Heinz, Mar 09 2018
-
PARI
a(n) = my(vp = factor(n)[,1]~, k=0); for (i=1, #vp, k = bitxor(k, vp[i])); k; \\ Michel Marcus, Feb 05 2018
-
Python
from functools import reduce from operator import xor from sympy import primefactors def A293212(n): return reduce(xor,primefactors(n)) # Chai Wah Wu, Jun 03 2025
Formula
a(n) = n iff n is a prime.
Comments