cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293234 a(n) is the number of proper divisors of n that are square.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2017

Keywords

Comments

First occurrence of k: 2, 8, 32, 72, 144, 288, 576, 1152, 2304, 4608, 3600, 7200, 36864, 20736, 14400, 28800, 32400, 64800, 57600, 115200, 663552, 18874368, 129600, 259200, 3359232, 810000, 921600, 1843200, 518400, 1036800, 705600, 1411200, etc. - Robert G. Wilson v, Oct 08 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Select[ Sqrt@ Most@ Divisors@ n, IntegerQ]; Array[f, 105] (* Robert G. Wilson v, Oct 08 2017 *)
  • PARI
    A293234(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA010052(d).
a(n) = A046951(n) - A010052(n).
G.f.: Sum_{k>=1} x^(2*k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 13 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/6 (A013661). - Amiram Eldar, Dec 01 2023